
NASA-CR-203981

//x.JTZ//hz _.

//J <::;'i .< c /Zi j

dd,, .-r

ALGORITHMS FOR PERFORMANCE_ DEPENDABILITY_ AND

PERFORMABILITY EVALUATION USING STOCHASTIC ACTIVITY NETWORKS

SUMMARY OF RESEARCH

Principal Investigator: William H. Sanders

Period Covered by the Report: 1/16/1996- 1/15/1997

Daniel D. Deavours, M. Akber Qureshi, and William H. Sanders

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory

University of Illinois

1308 West Main Street

Urbana, IL 61801-2307

(217) 333-0345
{deavours, qureshi, whs }@crhc. uiuc. edu

Grant Number: NAG 1 1782

Chapter 1

INTRODUCTION

Modeling tools and technologies are important for aerospace development. At the University

of Illinois, we have worked on advancing the state of the art in modeling by Markov reward

models in two important areas: reducing the memory necessary to numerically solve systems

represented as stochastic activity networks and other stochastic Petri net extensions while

still obtaining solutions in a reasonable amount of time, and finding numerically stable and

memory-efficient methods to solve for the reward accumulated during a finite mission time.

A tong standing problem when modeling with high level formalisms such as stochastic

activity networks is the so-called state space explosion, where the number of states increases

exponentially with size of the high level model. Thus, the corresponding Markov model

becomes prohibitively large and solution is constrained by the the size of primary memory.

To reduce the memory necessary to numerically solve complex systems, we propose new

methods that can tolerate such large state spaces that do not require any special structure

in the model (as many other techniques do). First, we develop methods that generate row

and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly

store the matrix at all. Next, we introduce a new iterative solution method, called modified

adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-

matrix, permitting us to cache portions of the matrix and hence reduce the solution time.

Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel

based solvers that avoids the need for generating rows of A in order to solve Ax = b. This

is a significant performance improvement for on-the-fly methods as well as other recent

solution techniques based on Kronecker operators. Taken together, these new results show

that one can solve very large models without any special structure.

The second approach, we developed a tool that makes no assumptions about the under-

lying structure of the Markov process, and it requires only slightly more memory than what

is necessaryto holdthesolutionvectoritself. It usesa diskto holdthestate-transition-rate
matrix, avariantof block Gauss-Seidelasthe iterativesolutionmethod,and aninnovative

implementationthat involvestwo parallelprocesses:the first processretrievesportionsof

the iterationpatrix from disk,andthesecondprocessdbesrepeatedcomputationonsmall

portionsof the matrix. Thus,onlyapart of the matrix needbe in memoryat anyonetime.

To illustrate its use,weconsidertwo realisticmodels- a Kanbanmanufacturingsystem

andthe Courierprotocolstack.Dependingon modelparametervalues,thesemodelshave

up to 10million statesand about 100million transitions,but wecanstill efficientlysolve

the modelson a workstationwith 128Mbytesof memoryand 4 Gbytesof disk. This is

a significantimprovementoverthe presentstateof the art with respectto the sizeof the

modelwecansolve,the solutiontime, andthe classof high levelmodelswemaysolve.

The abovetechniquesaddressexactnumericalresultsfor steadystate behavoir. A

muchmoredifficult problemisfindingtheprobabilitydistributionthe rewardaccumulated

duringa finite intervalof time. The intervalmay correspondto the missionperiod in a
mission-criticalsystem,the time betweenscheduledmaintenances,or a warrantyperiod.

In suchmodels,changesin statecorrespondto changesin systemstructure(dueto faults

and repairs),and the rewardstructuredependson the measureof interest. For example,

the rewardratesmay representa productivity rate while in that state, if performability

is considered,or the binary valueszeroand one,if intervalavailability is of interest. We

presenta new methodologyto calculatethe distribution of rewardaccumulatedover a

finite interval. In particular,wederiverecursiveexpressionsfor the distribution of reward

accumulatedgiventhat a particular sequenceof state changesoccursduring the interval,

andweexplorepathsoneat atime. Theexpressionsfor conditionalaccumulatedrewardare

newandarenumericallystable.In addition,by exploringpathsindividually,weavoidthe

memorygrowthproblemsexperiencedwhenapplyingpreviousapproachesto largemodels.

The utility of the methodologyis illustrated via applicationto a realistic fault-tolerant

multiprocessormodelwith overhalf amillion states.

The rest of this report is organizedin the followingway. Chapter2 discusseson-

the-fly solutiontechniques,the newiterative solutiontechniquecalledmodifiedadaptive

Gauss-Seidel,and a techniquefor performingGauss-Seidelbasediterationsby accessing

only columnsof A. Chapter 3 discuesses the disk-based tool we developed for solving very

large Markov systems. Chapter 4 explains the new path-based technique for solving for

distributions of reward variables that are both computationally and memory efficient, and

numerically stable.

Chapter 2

"ON-THE-FLY _' SOLUTION

TECHNIQUES FOR

STOCHASTIC PETRI NETS

AND EXTENSIONS

Abstract

Use of a high-level modeling representation, such as stochastic Petri nets, frequently

results in a very large state space. In this paper, we propose new methods that can tolerate

such large state spaces and that do not require any special structure in the model. First,

we develop methods that generate rows and columns of the state transition-rate-matrix on-

the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new

iterative solution method, called modified adaPtive Gauss-Seidel, that exhibits locality in

its use of data from the state transition-rate-matrix. This permits the caching of portions

of the matrix, hence reducing the solution time. Finally, we develop a new memory- and

computationally-efficient technique for Gauss-Seidel-based solvers that avoids the need for

generating rows of A in order to solve Ax = b. Taken together, these new results show that

one can solve very large SPN, GSPN, SRN, and SAN models without any special structure.

I Introduction

Problems of scalability in models and the resulting state-space explosion are daunting.

The traditional approach of generating a state-level model from a high-level specification,

such as stochastic Petri nets, typically results in very large state spaces for practical models.

Such problems are further compounded with even higher-level formalisms, such as stochastic

Petri nets with tokens that have attributes. This problem is often called the "largeness

problem," and is a major impediment to accurately modeling large and complex systems.

There have been numerous attempts to address the largeness problem, resulting in

techniques that produce either exact or approximate results. The exact approaches tend

to fall into two general categories: those that attempt to reduce the state-space size (e.g.,

methods based on stochastic well-formed nets [3] or reduced base model construction [17]),

and those that attempt to tolerate the large state space. Several techniques that tolerate

large state spaces take advantage of the fact that some components of a model (called

submodels) interact in a limited way with other submodels, so that the state-transition-

rate matrix of the model is a function of Kronecker operators on the state-transition-rate

matrix of the submodels. Solution methods for stochastic automata networks [18] are an

example of this type of method.

More recently, there has been work on superposed generalized stochastic Petri nets

(SGSPNs), which are essentially independent submodels that may be joined by synchro-

nizingon a timed transition. This classseemsto be morepromisingasa lessrestrictive

modelingtechnique.First introducedin [7], solutionsfor SGSPNswererestrictedby the

so-calledproductspace(theproductof the submodels'statespaces),whichcouldbemuch

larger than the set of tangiblereachablestates. Kem_er,in [10, 11],deviseda method

to operateon the tangiblespace,rather than the productspace,by providinga mapping

from productspaceto the tangiblereachablespace.Ciardoand Tilgner [6]built onKem-

per'swork by removingsomeof the imposedrestrictions,e.g., by allowingsynchronizing
transitionsto be immediate.

Webelievethat therearethreesubstantialrestrictionswith currentSGSPNtechniques.

First, all knownmethodsbasedonKroneckeroperatorsrequiremodelsto havea structure

suchthat thereare partially independentcomponentswith limited interactionbetween

them. While Ciardoand Tilgnerrelaxtheserequirementssignificantly,manymodelsstill

do not exhibit the structurerequiredto usethesemethods.

Second,the sumof the state spaces'sizesof the componentmodelsmust be smaller

than the sizeof state spaceof the combinedmodelfor Kronecker-basedmethodsto be

advantageous.This requiresthesubmodelsto beapproximatelythesamesize.

Third, Kronecker-basedmethodshavegenerallybeenlimited to the Poweror Jacobi

methods,both of which usuallyexhibit poor convergencebehavior. This is particularly

undesirablebecauselargesystemsof equationstend to exhibit worseconvergencecharac-

teristicsthan smallsystems.A notableexceptionis the workof Ciardo[4], whopresents

algorithmsfor doinga Gauss-Seideliteration, althoughweareunawareof any tool that
usesthem.

In contrast,we developmethodsin this paper that canbe usedwith all variantsof

stochasticPetri nets,regardlessof the structureof the model.Wedevelopnewtechniques

that permit the useof moregeneraliterativemethods,whichoftenconvergemorequickly.

Wedo this in threeways. First, wedevelopalgorithmsthat cangenerate,on-the-fly,the

requiredincomingand outgoingtransitionratesfrom a state. In particular, wegivetwo

algorithms:onefor standardstochasticPetrinets(SPNs)andonefor generalizedstochastic

Petrinets(GSPNs)[12].WeassumethereaderhasabasicunderstandingofMarkovmodels,

statespacegeneration,andbasiciterativesolutiontechniques.

Second,sincethe generationof the state-transition-ratematrix on-the-flytakessignif-

icantly moretime than doingan iterationwith the matrix in memory,wedevelopa new

iterativesolutionmethodthat exhibitslocality in its useof data from the state-transition-

5

ratematrix. Thisalgorithm,whichwecall modified adaptive Gauss-Seidel (MAGS), reuses

generated rows and columns in the state-transition-rate matrix within an iteration in order

to reduce the performance penalty incurred by their generation.

Third, any solution algorithm based on Gauss-Seid41, such as SOR, requires access to

rows of A in order to solve Ax = b, which corresponds to accessing the incoming rates of a

state in the corresponding Markov model. We describe a new approach that only needs to

compute outgoing (columns), not incoming (rows), rates, at the cost of having to keep two

vectors of size equal to the number of tangible reachable states: one vector for the solution

and another additional vector. This approach can be used with any solution method that

is based on Gauss-Seidel, such as SOR or adaptive Gauss-Seidel.

These three contributions, namely on-the-fly rate generation, MAGS, and column Gauss-

Seidel, are somewhat orthogonal in that they are independent contributions that can be

applied in other contexts. For example, solutions based on Kronecker operators could

benefit from both MAGS and column Gauss-Seidel. However, each contribution enhances

the other, and taken as a whole, they present a new solution technique that addresses all

restraining aspects of computing a solution to models that are otherwise intractable.

The remainder of the paper is organized as follows. Section II presents algorithms

for computing incoming and outgoing transition rates for SPN and GSPN models. These

algorithms are the core of our on-the-fly solution methods, since they compute the needed

rows and columns of the state-transition-rate matrix directly from the net representation,

without requiring explicit storage of the matrix in memory or on disk. Section III then

presents a new iterative solution algorithm that exhibits locality in its access to rows and

columns of the state-transition-rate matrix. Then, Section IV introduces a new approach

that avoids the need to have incoming transition rates for Gauss-Seidel-based iterative

methods, at the expense of keeping one additional vector of size equal to the number of

states in the model. This technique can easily double the speed of a solution if sufficient

memory is available. Finally, Section V presents some empirical results from a prototype

implementation of the method.

II Forward/Backward Access Algorithms

The first class of algorithms we develop makes use of both incoming and outgoing state

transition rates. In this section, we show two algorithms: one for SPN models, and.one for

6

Iterative

Solver

Matrix

Encoding

Figure 2.1: Solution Paradigm.

GSPN models.

Before proceeding, we will introduce some helpful notation. In particular, we will address

the solution of a system of simultaneous linear equations written as _rQ = 0, where _r is a

row vector and Q is the state-transition-rate matrix. Since we focus on numerical solution

techniques, we adopt the notation Ax = b, or more precisely Ax = 0, where A = QT and

z = _rT. Here, the off-diagonal i-th row elements of Q represent outgoing rates of state i in

the corresponding Markov chain, and the off-diagonal column elements of A represent the

same. Similarly, the off-diagonal i-th column elements of Q and the off-diagonal i-th row

elements of A represent the incoming rates to state i in the corresponding Markov chain.

To facilitate understanding our new approach, we present in Figure 2.1 a simple paradigm

for viewing the solution process. Instead of viewing the matrix as data, we view it as a

function returning the requested portion of the matrix. Hence, when the matrix is stored

explicitly in memory, the function may be quite trivial and efficient in terms of computa-

tion, but costly in terms of memory consumption. In this paradigm, the superposed GSPN

methods use Kronecker operators on smaller matrices and a mapping function to generate

an element of A. Thus, accessing an element of A requires more computation, but (usually)

less memory. Kronecker-based methods have the disadvantage of requiring a special struc-

ture in the model in order to work efficiently. In contrast, our methods act directly on the

net representation to generate a row or column of A. This requires significant computation,

but it will work with any model and will always take memory proportional to the size of

the model.

More specifically, let si represent an encoding of the i-th state of the model. The

encoding may be a simple concatenation of the bit encoding of the number of tokens in

places, or a more sophisticated encoding suggested by Kemper [10, 11], called a miz. The

encodings of all the states in the model form the set S = {Sl, s2,. ••, sn} (computed initially

byastatespacesearch).Tocomputethei-th column of A, we take the state encoding si with

the model and compute the successor states and the rates to those states. The significant

computational requirements to compute a column in A are to

1. Decode si

2. Determine all enabled timed transitions in si

3. Fire all enabled transitions and possibly search a network of immediate transitions to

determine the rate to each successor state j

4. For each successor state j:

(a) Encode sj

(b) Search for sj in S to determine index j

If we must do a binary search to look for an element in S (for the most efficient use of

space), the most expensive operation is probably 4 (b), which takes time O(log n), where n

is the number of states in the model. If we are willing to use more memory, we may use a

hash table to do the lookup in O(1) time. Since the problems we are addressing are limited

by the memory of the machine, we must be careful how we use the memory.

Generating a column of A is therefore straightforward, but accessing A only by columns

limits our choice of iterative methods to Jacobi or the Power method (unless the new

approach from Section IV is used). In order to use the more powerful Gauss-Seidel method,

or variants of it, we need to have access to rows of A. To illustrate the need for access to

rows of A, consider the basic action in the Gauss-Seidel method that we call a Gauss-Seidel

step:

(k+l) --1 . (k+l) aijx k) bi

xi = ai---__j_--1a_jxj + j=i+l -- (2.1)

where x (k) is the solution vector after k iterations. Doing a Gauss-Seidel step for i from 1

to n is called an iteration. In order to explicitly do the summation as shown above, one

must have access to a row of A. Entries in the i-th row correspond to the incoming rates

from predecessor states, so the task is to find the predecessor states and the corresponding

incoming rates. Finding the diagonal element, aii in Equation 2.1, is also non-trivial, since

it is defined as the negative sum of the outgoing rates. In general, to compute aii we must

/* Return the vector of off-diagonal row i */
a--0

for each t E Ti-1 do

sj _ si

if sj E S

aj = aj + r(t)
return a

Figure 2.2: Algorithm to get i-th column for SPN model,

compute the outgoing rates and sum them. In the following, we describe how to compute

the rows of A for SPN and GSPN models.

To find the off-diagonal elements of the i-th row of A, we must know the predecessor

states and incoming rates. In a model, this corresponds to finding the set of states that

lead to the state si. The approach we take to finding these predecessor states is basically

to execute the model one step "backwards" in time.

A SPNs

For SPNs, by which we mean Petri nets (with no inhibitor arcs) and exponentially timed

transitions, the algorithm is simple. To understand it, we first introduce the notion of a

reverse model. A reverse model is the corresponding model where the directions of all the

arcs have been reversed. The firing rules are the same except that any marking-dependent

rates are determined after a transition fires. We let T_ be the set of (timed) transitions

enabled in a marking or state i, and T/-1 be the set of transitions enabled in the reverse

model. The notation si _ sj means state i goes to state j with rate r(t) by firing transition

t. Similarly, sj r(_ si means state i goes to state j with rate r(t) in the reverse model,

or, equivalently, state j goes to state i with rate r(t) in the forward model. The symbol

S denotes the reachable set of states. The algorithm for computing the non-diagonal row

entries is shown in Figure 2.2.

To perform a Gauss-Seidel step on xi, we need to access the i-th row of A, including

the diagonal element aii. To compute the diagonal, we must also compute the i-th column

vector. The necessity of computing both the i-th row and the i-th column presents an

additional significant cost to computing the row vector. In Section III we show how we can

makeuseof thealreadycomputedcolumnvectorin a morepowerfuliterativetechnique.In

SectionIV weshowhowto performGauss-Seidelby only accessing A by columns.

The SPN modeling paradigm is simple, but modeling complex systems with simple SPNs

is difficult. We present this algorithm because SPNs ard simple and fast. This also gives a

framework on which we can build more complex algorithms.

B GSPNs

The procedure for computing the outgoing states and rates for a GSPN model is a

straightforward extension of SPNs and is generally well known. However, it is less trivial

to compute the incoming states and rates, or correspondingly, the i-th off-diagonal row

elements of A. Figure 2.3 shows the algorithm we propose to do this. This algorithm allows

for general marking-dependent rates and weights, so we can replace inhibitor arcs with

transitions with marking-dependent rates or weights. The new notation is as follows: Ti is

the set of transitions enabled in state si, T(-1 is the set of transitions enabled in the reverse

model in state si, T -1 is a set containing transitions enabled in the reverse model that

have become enabled exclusively by the firing of some immediate transition, and sj w(+__)si

means si goes to sj by firing a single immediate transition rn with weight w(m) in the

reverse model. Ii is the set of immediate transitions enabled in state si in the forward

model, and Ii--1 is the set of immediate transitions enabled in state si in the reverse model.

The algorithm consists of two basic procedures that correspond to searching timed and

immediate transitions. At a high level, we simply reverse the directions of the arcs and

search all paths involving the firing of any number of immediate transitions followed by the

firing of a timed transition. The algorithm we present does this in an organized way.

In particular, the algorithm starts by searching predecessor states reached by firing timed

transitions in the reverse model. Those are the states that lead to the current state by firing

only a single timed transition. After those are searched, T -1 is set to {}. Transitions are

added to T -1 only as they become enabled by firing an immediate transition in the reverse

model. An intuitive explanation for this is that in the forward model, a stable marking

goes to a stable marking by firing a timed transition followed by a number of immediate

transitions. Therefore, if we trace the same path backwards in the reverse model, the path

can not end with the firing of a timed transition that does not become enabled by the firing

of immediate transitions along the path. We can avoid examining many vanishing states

10

/* Return the vector of off-diagonal column i */
a=0

for each t E T/-1 do

sj _ si

if sj E S

aj -= aj + r(t)
set T -1 = {}

call search_back_im(si, 1)

procedure search_back_im(si, r)

for each m C I/-1

sj w(+__)si (update T -1)

Vklsff(--_k)sk
for each t E T -1 do

8 k _ 8j

if/k={} andskES

ak = ak + _f(t)

call search_back_im(sj, i)

Figure 2.3: Algorithm to get i-th column for GSPN model.

11

this wayandthereforepreventunnecessarycomputation.

The search_back_iraprocedurerecursivelysearchesthroughthe networkof immediate

transitions. After an immediatetransition is fired in the reversemodel,wedeterminethe

probability _ andtry firing eacht E T -1 to see if it results in a stable marking. We have

found that maintaining Ii can be done efficiently and can prevent unnecessary searching in

S for a vanishing marking (which is usually computationally more expensive).

Figure 2.3 shows the basic algorithm, but there are some possible improvements. We

noted above that inhibitor arcs are a special case of marking-dependent values, which is the

simplest way to deal with them. We could also build static data structures that can tell us

if a transition in the reverse model is "inhibited," that is, that there is no need to fire a

transition in the reverse model because it would result in a state where that transition is

inhibited in the forward model.

III Numerical Solution Methods That Exhibit Locality

Given algorithms to generate desired row/columns of A on-the-fly, we need iterative

methods to solve Ax = 0 for the non-trivial solution of x. Typically, A is very sparse, so

a vector multiplied by a row (or column) of A requires few operations. For superposed

GSPN methods and the methods we present here, the time to compute a row or column of

A is much greater than the time to do a vector-vector multiply, so we would like to have

iterative techniques that can re-use the row (or column) of A as much as possible within a

single iteration. In this section, we will present a method that has this property. Informally,

the strategy is to generate a sequence of rows and columns, store them in a software cache,

re-use that part of the matrix as long as it is useful, and then discard the sequence, generate

a new sequence, and continue. We are willing to do more work in the solution process in

return for fewer accesses to the matrix in order to speed up the overall time to compute the

solution.

Adaptive Gauss-Seidel Modified adaptive Gauss-Seidel (MAGS) is an extension to

adaptive Gauss-Seidel [8, 9] that exhibits locality. To motivate its formulation, we _first

review adaptive Gauss-Seidel. Adaptive Gauss-Seidel (AGS) is based intuitively on the ob-

servation that some elements sometimes converge or change more quickly than others, that

(k+l) (k)
is, Ixlk+l)-xla) I > xj --xj t" If this is true, then a Gauss-Seidel step on xi is considered

12

moreeffective than a Gauss-Seidel step on xk, and therefore more work should be done on

xi. The intuition is that xi is getting to the solution faster, so we should do steps on it

more frequently. AGS is thus a variant of Gauss-Seidel where Gauss-Seidel steps are not

necessarily performed in sequential order. Adaptive Ga'uss-Seidel is based on the methods

of Riide [16], for which he shows rigorously the effectiveness of the algorithm for the case

where A is symmetric, positive definite. Since A is not symmetric or positive definite for

Markov models, we use AGS as a heuristic. Our belief in its effectiveness is based on the

fact that Horton [9] shows empirically that AGS needs significantly fewer floating point

operations than standard point Gauss-Seidel to solve certain Markov models to the same

accuracy.

Heuristically, if we do a Gauss-Seidel step on element i and we find that Ixl k+l) - x_k) I

is large, then we have done effective work on element i. Because the change in xi is large,

we should also do work on states whose occupancy probability directly depends on xi,

since they too could change significantly. These states are the successor states of state i

in the corresponding Markov chain and are also the non-zero off-diagonal elements of the

i-th column of A. For simplicity, we quantify effectiveness by a single number c, and if

]xl k+l) - xl k)] > e, then we should also do work on the successors of state i. In Section II,

we noticed that in order to compute aii, we need to compute the outgoing rates of state

i. This heuristic can take advantage of this by noticing the successor states of si (i.e.,

the non-zero entries of the i-th column). Now we may begin to formulate the basis of an

algorithm based on these observations.

In particular, let M be the set of states on which we need to perform work, which is

initially set to S. Figure 2.4 shows the algorithm in detail for a given e. The algorithm

continues until M is empty. We call this one AGS iteration. The strategy to get a solu-

tion efficiently is to pick an initial large e0, call AGS, and then repeat the process with a

successively smaller e.

The way to decrease e at each iteration is a difficult problem. Horton [8, 9] proposes

decreasing it by a multiplicative constant Ac, shown here.

£-_-_0

while not converged

AGS (E)

=cxA

13

procedure AGS(c)

M _ 81,...,8 n

while M # {}

choose state si E M

M = M\ {si}

t=xi

Gauss-Seidel_Step (i)

if It -- xi[>

for all j _ i, aji _£ 0

M=MU{sj}

Figure 2.4: Adaptive Gauss-Seidel iteration.

Choosing a good Ae is also difficult. If we choose a value near one, it makes MAGS work

like normal Gauss-Seidel. If Ac is too small, fast-changing elements may start to converge

to the wrong values, resulting in unnecessary work. Horton suggests values between 0.5

and 0.1, and our experimentation shows that these values are good for our modification to

AGS as well. The convergence criteria could be any of the known criteria, or it could be a

sufficiently small e. This seems to be at least as good as the commonly used [Ix (k+l) -x(k)[[

method.

Modified Adaptive Gauss-Seidel Although AGS may speed convergence, since it

works on states according to an "effectiveness" criterion, it does not ensure any kind of

locality for data re-use. In particular, we note that AGS does not specify which state

should be removed from M. We have modified the algorithm to narrow the choices in order

to create locality. Specifically, we modify AGS by adding another set C, which is used to

represent a software cache of M. The set C has two types associated with each element:

activated and deactivated. We modify AGS by first limiting our working set to C, and when

we would add si to M, we instead first check whether si E C, and if it is, activate si;

otherwise we add si to M. The algorithm for modified AGS (MAGS) is given in Figure 2.5.

In practice, the order in which we choose elements from M or C plays a very significant

role in the convergence characteristics. Experience has shown that the best convergence

occurs when elements are chosen from C or M in a breadth first order. Experience has also

shown that MAGS, while it is a valid implementation of AGS, does not usually perform as

well as Horton's implementation of AGS. This tells us that the convergence characteristics

14

procedure MAGS (c)

M = Sl,...,Sn

while M # {}
CcM

M=M\C
while there exists an active element in C

choose an active si E C

deactivate si in C

t=Xi

call Gauss-Seidel_Step (i)

if It-- xi[> e

for all j # i, aji _ 0

if sj E C then activate sj in C

else M = M U {sj}

Figure 2.5: Modified adaptive Gauss-Seidel iteration.

of AGS are very dependent on the order in which elements are removed from M or C. In

the worst performance, MAGS performs roughly as well as Gauss-Seidel.

IV Forward Solution Methods

The complexity in applying the above iterative solution techniques comes because they

are based on Gauss-Seidel iteration steps, and hence require row access to A. One can avoid

accessing rows, but this restricts solution techniques to the Jacobi or Power methods. In the

two previous sections, we showed how to solve models using Gauss-Seidel-like methods by

computing the predecessor states. Finding predecessor states requires more computation

per iteration than finding successor states, but allows the use of iterative methods that

typically converge with fewer iterations.

In this section, we show how, with a little additional work and memory requirements

identical to those for the Jacobi method (one additional vector the size of a solution vector),

we can also perform Gauss-Seidel-based methods, and yet require only the computation of

successor states. This result is very important, since it shows that if one can use the Jacobi

method, then with little additional work and no additional memory, one can use Gauss-

Seidel-based iterative methods. If we have the memory to hold a second vector of size equal

to the number of states, we can perform all iterative solution techniques that are based on

15

Gauss-Seideliteration stepswithout the costof computingpredecessorstates.Whenthis

is done,wecancomputesolutionson-the-flyto moreexpressivemodelingparadigms,such

asstochasticactivity networks(SANs)[13,14]andstochasticrewardnetworks(SRNs)[5].

Althoughthemethodworksfor all iterativesolutiontechhiquesbasedonGauss-Seidelsteps,

wedevelopit in termsof standardGauss-Seidelfirst, andthenshowhowit canbeusedin

moresophisticatedvariants,suchasSORandmodifiedadaptiveGauss-Seidel.

A Column Gauss-Seidel

To understandhowwecaneliminatethe needfor rowaccess,we recallthat the basic

operationin manyGauss-Seidel-basediteration schemesis the Gauss-Seidelstep, given

in (2.1). By usingthis stepasthe basicunit of computation,wecanseamlesslyreplace

Gauss-Seidelstepswith the newvariant,whichrequiresonly column(successor)accessin
other iterativemethods.

Weintroduceourstrategywith avector5, which we define as

_(k+l) _ x!k)5i = x i _ ,

_(k+l) __ X(k) + 5i. We showso that a Gauss-Seidel step on element i is equivalent to setting :_i -

how to initialize 5, and then given 5, we show how doing a Gauss-Seidel step on element i

affects 5j for all j _ i.

In particular, let x (1) be some initial guess. We initialize 5 by the following:

5=0

for i = 1 to n

forj=ltonlj#i

5j = 5j + ajixl 1)
for i = 1 to n

5i = (bi - 5i) /aii - Xl 1)

This essentially does a Jacobi iteration and places x (2) - x (1) in 5. This is what we want

because if we choose to start Gauss-Seidel at xi, then xl 2) = xl 1) -5i. (The first Gauss-Seidel

step is identical to the first Jacobi step.)

Now we may do a Gauss-Seidel step on any element by simply doing the computation

xl 2) = x_ 1) + 5i. Once we do the computation, however, 5j is in general obsolete. We now

16

showhowto update6j aftereachGauss-Seidelstep. Saywedoa Gauss-Seidelstepon xi,

in the most general form

= -- -- aijxj +hi ,
aii j=l

j¢i

where x_ is the most recently computed value of xj. After this step, 6i = O. Now say we do

step p on xc, and then observe the effects that this computation has on 6i.

i -- -- ai i

Finally,

--aic6c
6i = ---

aii

Now let us not assume 6i -- 0. We denote 6o as the value of 6i before performing a

Gauss-Seidel step on xc. Inductively, we can show that after we do a Gauss-Seidel step on

xc, we can compute the new 6i from the value of 5° and 6c.

x(k+l) _ Xlk) 0 --1 (,,. ,_(k+l))= 6i -t- -- k,_zc_c _ aicX¢:)(ki
aii

aic6c
6i = 6° (2.2)

aii

Now we can see that updating 6i after performing a Gauss-Seidel step on xc requires access

to the c-th column of A. In addition, computing 5i also needs aii, but this dependency

is easy to eliminate. If we let di = 6iaii, and d o is the value of di before performing a

Gauss-Seidel step on xc, then

di = d° - aic6c •

Then, when doing the Gauss-Seidel step on xi, simply divide di by aii and update all

djl aji _ O. We now have everything necessary to perform a Gauss-Seidel step on xi by

accessing only the i-th column of A.

17

Successive Over-Relaxation We now show how to easily extend this method to Suc-

cessive Over-Relaxation (SOR). Recall the basic step for SOR:

x(k+l) = + (1- k/C

where 2i is the Gauss-Seidel iterate. We computed above

= x(k)+ & ,

and by substitution,

x(k+l) X!k) ÷ wSc

The updating of 5i, Vi _ c is done by (2.2). From this, we can see that the column-only

SOR step involves only a minor extension to the column-only Gauss-Seidel.

Algorithm Figure 2.6 shows the algorithm for doing a Gauss-Seidel step using only col-

umn access. We show the algorithm with the feature of over-relaxation parameter w, which

is set to 1 for standard Gauss-Seidel, but in general can take on values w E (0, 2). Notice

that the column Gauss-Seidel step procedure accesses only the i-th column of A. Conse-

quently, we can perform any Gauss-Seidel-based step on element xi using on-the-fly matrix

generation solely by computing the successor states and corresponding rates of state si.

As an example of the use of this implementation of a Gauss-Seidel step, we show an

implementation of standard Gauss-Seidel.

x = initial guess

call Gauss-Seidel_Step_Init ()

while x not converged
for i = 1 to n

callcGauss-Seidel_Step (i)

We call this algorithm column Gauss-Seidel. Notice that we can do column Gauss-Seidel

with the same memory requirements as Jacobi, and after an initialization cost, the same

number of operations per iteration as Jacobi and Gauss-Seidel.

Recall that the diagonal element aii is the negative sum of the off-diagonal elements

in the i-th column. Performing a Jacobi iteration while accessing A by columns requires

two basic steps. In the first step, we do the matrix-vector multiply x (k+l) = (A - D)x (k),

where D is the diagonal matrix of A. This step accesses the off-diagonal elements of A.

18

/* Matrix A E T_n×n */

/* arrays x, b, and d E T_n */

/* Solve Ax = b using d. */

procedure cGauss-Seidel_Step_Init ()
d=0

for i = 1 to n

for j = 1 tonlj#i

dj = dj + ajixi
for i -- 1 to n

di = (bi - dJaii - xi)aii

procedure cGauss-Seidel_Step(int i)

5 =- wdi/aii

xi = xi + 5

forj=l ton[j#i

dj = dj - ×

Figure 2.6: Gauss-Seidel step requiring only column access to A.

The next step does x (k+l) = D-ix (k+l) + D-lb, which accesses the diagonal elements of A.

If A is encoded, the two steps require two sweeps of A, one for the off-diagonal elements

and one for the diagonal elements. The alternative is one sweep of A and explicit storage

of the diagonal elements. Two sweeps of A would substantially decrease performance, and

explicit storage of D requires additional memory of the same size as x. Therefore, the

Jacobi method requires two sweeps of the matrix per iteration with IAI + 2n memory, or

one sweep per iteration with IAl+3n memory. Column Gauss-Seidel, on the other hand, only

needs IAI + 2n memory and a single sweep of the matrix per iteration. Thus, for on-the-fly

techniques, column Gauss-Seidel takes either less work or less memory than Jacobi.

Furthermore, column Gauss-Seidel has some improved numerical properties relative to

Gauss-Seidel or Jacobi. As the iteration process approaches the solution, the algorithm

keeps d to full precision, even while variations in x are small. Column Gauss-Seidel may

thus proceed as if x were kept to greater precision, because all the important information

about x (namely x (k+l) - x (k)) is stored in d; this is useful when elements in x vary in

size by many orders of magnitude and the user requires a high degree of accuracy. The

algorithm is not self-correcting, however. If somehow (due to rounding errors, for example)

x is perturbed, the algorithm will converge to the wrong answer. An easy solution to this is

19

to reinitialized when the iteration process is near the solution, or after every several digits

of accuracy acquired.

B Column Modified Adaptive Gauss-Seidel-and Block Gauss-Seidel

As mentioned earlier, the approach used to obtain column-only Gauss-Seidel can be

extended to all Gauss-Seidel-based algorithms. In this case of modified adaptive Gauss-

Seidel, this is very straightforward; the routine cGauss-Seidel_Step is a direct replacement

for the routine Gauss_Seidel_Step. This substitution results in an algorithm that can solve

any model class, especially SAN or SRN models, with much greater speed than the variant

that requires row access. The cost of using column-only Gauss-Seidel is some extra time

spent in initialization (negligible) and the extra memory to hold d. If this memory is

available, the column-only variant should be used.

• V Prototype Implementation Performance Comparison

We have made a prototype implementation to compare the speed of our technique to

that of existing solvers based on Kronecker methods. As is typically the case with such

comparisons, the prototypical nature of each implementation makes it very difficult to fairly

compare performance of different methods. The use of different computing platforms and

differences in the algorithms themselves makea comparison difficult. For example, Kemper

has reported the time for a single Jacobi iteration for a particular model, where an iteration

is defined as a sweep through the entire state space. Our new method (MAGS) uses a

different notion of iteration. The algorithm does a dynamic number of basic Gauss-Seidel

steps, that is determined by certain parameter values and an depending on an "effectiveness"

criterion, rather than by a simple sweep through the state space. Furthermore, recently used

rates are cached using our technique, and we expect that each operation in our solution

technique will be more effective in leading the solver to convergence.

In spite of these difficulties, we will try to make a comparison between the Kronecker-

based implementation by Kemper and our prototype on-the-fly method implementation. In

doing so, we make the assumption that the time taken by the iterative solver in actually

performing vector-vector multiplications is negligible relative to the cost of generating the

required data for both the Kronecker and on-the-fly methods. This is reasonable, since both

methods perform many more operations in obtaining the required rates than in using them.

20

Our computer(a 120MHz Hewlett-PackardModelCll0) canperformGauss-Seidelwith

over-relaxationby accessingA at a rate of 50 MB/s, for example, if the state-transition-rate

matrix is stored explicitly in memory.

Since the methods have a different notion of iteratiSn and use the obtained rates very

differently (our algorithm should typically converge with fewer iterations, using a consistent

notion of iteration), it is not possible to compare iteration costs. Instead, we compare data

generation rates of the two implementations. To calculate the data generation rate for

Kemper's implementation, we divide the time to do an iteration by the number of non-

zero entries in the matrix, and we obtain a data generation rate of approximately 700

Kbytes/second on an 85 MHz Sparc 4 machine. Measurements of an SPN model on our

machine show that we can generate data at a rate of about 440 KByte/second.

We guess that our machine is roughly three times faster than the one Kemper used,

resulting in a data generation rate for the Kronecker-based implementation that we guess is

five times faster than the on-the-fly methods. Thus (as might be expected), it takes longer

to generate data for a completely general model representation than for one that exhibits

the special structure needed for Kronecker-based solution methods. However, we reuse data

that is generated (in a small, fixed-size cache) and use a solution algorithm that should be

faster than Jacobi for most models. Thus, the solution times for the prototype on-the-fly

implementation are roughly similar to those for Kronecker-based methods, and since our

methods are applicable to a much wider class of models and can use more effective iterative

solvers, it is reasonable to use them for models that do not exhibit the special structure

necessary for the Kronecker approach.

VI Conclusion

We make three important contributions in this paper. First, we propose a technique

that can solve very general models of approximately the same size as Kemper and Ciardo

[6, 10, 11], using approximately the same amount of memory. Instead of requiring the

special model structure needed for a Kronecker-based solution, we generate the required

row and/or columns of the state-transition-rate matrix on-the-fly, allowing for a completely

general structure. In particular, we develop algorithms for doing this for SPN and GSPN

models.

Second, we recognized that for all such methods (both ours and Kronecker-based ones),

21

generationof ratesfrom the state-transition-ratematrix is muchslowerthan the iterative

solutionprocess.To accountfor this, wedevelopeda newiterativesolutionprocess,called

modifiedadaptiveGauss-Seidel,that exhibits locality in its useof ratesfrom the state-

transition-ratematrix, and hencedoesnot requireas]_igha data generationrate to be

competitive.Becauseof this, wecancacherecentlygeneratedratesin memory,minimizing

the bottleneckof rate generation.

Third, weshowedhowto solveAx = b using Gauss-Seidel and variants by accessing

A only by columns. This method is no more computationally expensive than Gauss-Seidel

(except for initialization, which is a very small part of the cost) and takes no more (or even

less) memory than Jacobi. This result is very important, since it shows that if we have the

memory to hold a second vector of size equal to the number of states in the model, (the same

requirement that the Jacobi method has,) we can perform all iterative solution techniques

that are based on Gauss-Seidel iteration steps without the cost of backward execution.

Finally, we compare the performance of a prototype implementation of our method to a

prototype implementation using the Kronecker approach. We saw that our implementation

generates data (transition rates) at a speed about five times slower than the Kronecker-

based prototype did. However, we believe that the faster convergence rate of MAGS and

the locality of its use of rate information, combined with column-only Gauss-Seidel, makes

the on-the-fly approach viable for the solution of large models that can not be solved by

the Kronecker approach.

REFERENCES

[t] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994.

[2] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Hadaad, "On well-formed coloured

nets and their symbolic teachability graph," in Proc. Eleventh Conference on Applica-

tion and Theory of Petri Nets, Paris, France, June 1990. Reprinted in K. Jensen and

G. Rozenberg, ed., High-Level Petri Nets. Theory and Application, Springer Verlang,

1991.

22

[3] G. Chiola and G. Franceschinis,"ColoredGSPNmodelsand automaticsymmetry

detection," in Proc. Third Int. Workshop on Petri Nets and Performance Models

(PNPM'89), pp. 50-60, Kyoto, Japan, Dec. 1989.

[4] G. Ciardo, "Advances in compositional approaches based on Kronecker algebra: Ap-

plication to the study of manufacturing systems," in Third International Workshop on

Performability Modeling of Computer and Communication Systems, pp. 61-65, Bloom-

ingdale, IL, Sept. 7-8, 1996.

[5] G. Ciardo, A. Blakenmore, P. F. J. Chimento, J. K. Muppala, and K. S. Trivedi,

"Automatic generation and analysis of Markov reward models using Stochastic Reward

Nets," in C. Meyer and R. J. Plemmons, ed., Linear Algebra, Markov Chains, and

Queueing Models, vol. 48 of IMA Volumes in Mathematics and its Applications, pp.

141-191, Springer-Verlag, 1993.

[6] G. Ciardo and M. Tilgner, "On the use of Kronecker operators for the solution of

generalized stochastic Petri nets," ICASE Report _96-35 CR-198336, NASA Langley

Research Center, May 1996.

[7] S. Donatelli, "Superposed generalized stochastic Petri nets: Definition and efficient

solution," in R. Valette, ed, Application and Theory of Petri Nets 199_, Lecture Notes

in Computer Science 815 (Proc. 15th Int. Conf. on Application and Theory of Petri

Nets, Zaragoza, Spain), pp. 258-277, Springer-Verlag, June 1994.

[8] G. Horton, "Adaptive relaxation for the steady-state analysis of Markov chains," in

William J. Stewart, ed., Computations with Markov Chains, pp. 585-586, Kluwer Aca-

demic Publishers, Boston, 1995.

[9] G. Horton, "Adaptive Relaxation for the Steady-State Analysis of Markov Chains,"

ICASE Report _94-55 NASA CR-194944, NASA Langley Research Center, June 1994.

[10] P. Kemper, "Numerical analysis of superposed GSPNs," in Proc. Int. Workshop on

Petri Nets and Performance Models (PNPM'95), pp. 52-61, Durham, NC, Oct. 1995.

[11] P. Kemper, "Numerical Analysis of Superposed GSPNs," in IEEE Transactions on

Software Engineering, vol. 22, no. 9, Sept. 1996.

23

[12]M. A. Marsan,G. Balbo,G. Conte,S.Donatelli,and G. Franseschinis,Modeling with

generalized stochastic Petri nets, John Wiley _ Sons, 1995.

[13] J. F. Meyer, A. Movaghar, and W. H. Sanders, "Stochastic activity networks: Struc-

ture, behavior, and application," In Proc. International Workshop on Timed Petri

Nets, pp. 106-115, Torino, Italy, July 1985.

[14] A. Movaghar and J. F. Meyer, "Performability modeling with stochastic activity net-

works," In Proc. 1984 Real-Time Systems Syrup., pp. 215-224, Austin, TX, Dec. 1984.

[15] M. A. Qureshi, W. H. Sanders, A. P. A. van Moorsel, and R. German, "Algorithms for

the Generation of State-Level Representations of Stochastic Activity Networks with

General Reward Structures," In Proc. Int. Workshop on Petri Nets and Performance

Models (PNPM'95), pp. 180-190, Durnham, NC, Oct., 1995.

[16] U. Riide, "On the multilevel adaptive iterative method," in Preliminary Proceedings of

the Second Copper Mountain Conference on Iterative Methods, April 9-14, 1992. Also

in T. Manteuffel, ed., SIAM J. Sci. Comput., 15, 1994.

[17] W. H. Sanders and J. F. Meyer, "Reduced Base Model Construction Methods for

Stochastic Activity Networks," in IEEE Journal on Selected Areas in Communications,

vol. 9, no. 1, pp. 25-36, Jan. 1991.

[18] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton

University Press, 1994.

24

Chapter 3

AN EFFICIENT DISK-BASED

TOOL FOR SOLVING VERY

LARGE MARKOV MODELS

25

Abstract

Very largeMarkovmodelsoftenresultwhenmodelingrealisticcomputersystemsand

networks.Wedescribea newtool for solvinglargeMarkovmodelson atypical engineering

workstation.This tool doesnot requireanyspecialpropertiesor a particular structurein

the model,andit requiresonly slightly morememorythan what is necessaryto holdthe

solutionvector itself. It usesa disk to hold the state-transition-ratematrix, a variantof

blockGauss-Seidelastheiterativesolutionmethod,andaninnovativeimplementationthat

involvestwo parallelprocesses:the first processretrievesportionsof the iteration matrix

from disk, and the secondprocessdoesrepeatedcomputationon small portionsof the

matrix. Wedemonstrateits useon two realisticmodels:a Kanbanmanufacturingsystem

and the Courierprotocolstack,whichhaveup to 10million statesandabout 100million

nonzeroentries.Thetool cansolvethemodelsefficientlyonaworkstationwith 128Mbytes

of memoryand4 Gbytesof disk.

I Introduction

A widevarietyof high-levelspecificationtechniquesnowexist forMarkovmodels.These

include,amongothers,stochasticPetri nets,stochasticprocessalgebras,varioustypesof

blockdiagrams,andnon-productform queuingnetworks.In mostcases,very largeMarkov

modelsresultwhenonetriesto modelrealisticsystemsusingthesespecificationtechniques.

The Markovmodelsaretypicallyquitesparse(adjacentto fewnodes),but containa large

numberof states.This problemis knownasthe "largenessproblem." Techniquesthat re-

searchershavedevelopedto dealwith the largenessproblemfall into two generalcategories:

thosethat avoidthe largestatespace(forexample,by lumping,)andthosethat toleratethe

largestatespace(for example,by recognizingthat the modelhasa specialstructureand

storingit in a compactform). While manylargenessavoidanceand tolerancetechniques

exist, fewareapplicableto modelswithout specialstructure. Methodsaresorelyneeded

that permitthesolutionof verylargeMarkovmodelswithout requiringthemto havespecial

propertiesor aparticularstructure.

In this paper,wedescribea newtool for solvingMarkovmodelswith very largestate

spaceson a typical engineeringwoikstation. The tool makesno assumptionsabout the

underlyingstructureof the Markovprocess,and requireslittle morememorythan that

necessaryto hold thesolutionvectoritself. It usesa disk to hold the state-transition-rate

26

matrix, a variant of block Gauss-Seidelas the iterative solutionmethod,andan innova-

tive two-processimplementationthat effectivelyoverlapsretrievalof blocksof the state-

transition-ratematrix from diskand computationon the retrievedblocks. The tool can
solvemodelswith ten million statesand about 100million transitionson a machinewith

128Mbytesof mainmemory.Thestate-transition-ratematrix is storedondisk in a clever

manner,minimizingoverheadin retrieving it from disk. In addition, the tool employsa

dynamicschemefor determiningthe numberof iterationsto performon a block before

beginningon the next,whichweshowempiricallyto providea nearoptimumtime to con-

vergence.Solutiontime is typicallyquickevenfor very largemodels,with only about20%

of the CPUtimespentretrievingblocksfromdiskand80%of the CPUresourcesavailable

to performtherequiredcomputation.

In addition to describingthe architectureand implementationof the tool itself, we

illustrate its useon two realisticmodels:oneof a Kanbanmanufacturingsystem[2],and

anotherof the Courierprotocolstackexecutingon a VME bus-basedmultiprocessor[14].

Both modelshaveappearedbeforein the literature,andareexcellentexamplesof models

that havevery largestatespacesfor realisticsystemparametervalues.In particular,both

modelshavebeenusedto illustratethe useof recentlydevelopedKronecker-basedmethods

[2, 7], and the Courierprotocolhasbeenusedto illustratean approximatemethodbased

on lumping[14]. Both numericalresultsandsolutiontimesarepresentedfor eachmodel

and,whenpossible,comparedto previouslyobtainedvaluesand solution times. In each

casewecanobtainanexactsolution(to thedesiredprecision)in significantlylesstime than

previouslyreportedusingKronecker-basedmethods.It is thusour belief that if sufficient

diskspaceisavailableto holdthestate-transition-ratematrix, our approachis the method

of choicefor exactsolutions.

The remainderof the paper is organizedas follows. First, in SectionII, weaddress

issuesin the choiceof a solutionmethodfor very largeMarkovmodels,comparingthree

alternatives:Kronecker-basedmethods(e.g.,[7,2]), "on-the-fly"methods[3],andthedisk-

basedmethodthat weultimately choose.This sectionpresentsclear argumentsfor the

desirabilityof disk-basedmethodsif sufficientdisk spaceis available. SectionIII then

describesthearchitectureandimplementationof the tool, describingsolutionsto issueswe

facedin buildinga practicalimplementation.Finally,SectionIV presentstheresultsof the

useof the toolon the two modelsdescribedearlier.

27

Iterative
Solver _ Matrix9 Encoding

Figure3.1: Solutionparadigm.

II The Case for Disk-Based Methods

For our tool implementation,we consideredthreenumericalsolution techniquesfor

toleratinglargestatespaces:Kronecker-basedtechniques,"on-the-fly"techniques,anddisk-

basedtechniques.To evaluateeachmethod,weintroducea paradigmbasedonFigure3.1.

Here,we divide the numericalsolutionprocessinto the iterative solverand the matrix

encoding.Thekeyto solvinglargematricesis to encodethe matrix sothat it takeslittle

mainmemory(RAM), but still allowsquickaccessto matrix elements.Theiterativesolver

is thus a data consumer,and the matrix encoderis a data producer. We would like for

both to beasfastaspossibleto obtaina solutionquickly.An additionalimportant factor

is how effectivelya particular iterative methodusesthe data it consumes.For example,

certainiterativemethods,suchasGauss-Seidel[12]andadaptiveGauss-Seidel[5],typically
do moreeffectiveworkwith the samenumberof accessesto the matrix as Jacobior the

Powermethod,andhencedonot requireashighadataproductionrateto efficientlyobtain

a solution. We want to find a fastbut generalmatrix encodingschemeand an effective

iterativemethodwith a lowdataconsumptionrate.

Thefirst classof encodingschemesweconsiderarethoseof Kronecker-basedmethods.

Thesemethodsrequireand makeuseof the fact that in certainmodels,particularparts

of the model (calledsubmodels)interactwith oneanotherin a limited way. Oneway to

insurea modelhasthis structure is to constructit accordingto a prescribedset of rules

from smallermodels,asis done,for example,in the caseof stochasticautomatanetworks

[12]. If onefollowstheserules,onemayeasilyexpressthe transition rate matrix for the

entire modelasa function of Kroneckeroperatorson the transition rate matricesof the

submodels.

Morerecentlytherehasbeenworkonatype of modeldecompositioncalledsuperposed

generalizedstochasticPetri nets (SGSPNS)[1, 2, 7, 10,11]. SGSPNsareessentiallyin-

dependentmodelsthat may be joinedby synchronizationof a transition. Webelieve[2]

to be the stateof the art in Kroneckeroperatormethods,and althoughthe morerecent

28

techniquescansolvea muchlargerclassof modelsthanoriginallyproposedin [4],they are

still restrictivein the modelsthat theycaneffectivelysolve.

To evaluatethe speedof the Kroneckeroperatormethods,weobserverates in which

the iterativesolverandmatrix encodingoperate.Wehaveobservedthat onourcomputer

(120MHz Hewlett-PackardModelCl10), the SORiterative solvercan consumedata at

a rate of about 50Mbyte/second.From numberspublishedby Kemper [7],weestimate

that his implementationof the Kronecker-basedmethodcan producedata at a rate of

700Kbyte/secondon an 85 MHz Sparc4, and weextrapolatethat the rate would be

about2 Mbyte/secondon ourHP Cl10. Sinceboth thedataproductionandconsumption

require the CPU, the wholeprocesswill proceedat a rate of about 1.9 Mbyte/second.

Kemper'smethodis alsorestrictedto Jacobior the Powermethod,whichusuallyexhibit

poor convergencecharacteristics,so the effectivenessof its useof generateddata is low.

CiardoandTilgner [2]presenttheir owntool, but they donot presentdata in sucha way

that wecananalyzethe data generationrate. We cancompareactual timesto solution

for their benchmarkmodel,however,and dosoin SectionIV. Ciardogivesalgorithmsto

performGauss-Seidelona Kroneckerrepresentationin [1],but hasnot yet built a toolwith

whichwecancompareour approach.

The secondclassof encodingschemesweconsideredfor implementationin this tool

are "on-the-fly"methodsintroducedin [3].On-the-flymethodshavenoneof thestructural

restrictionsof Kronecker-basedmethods,andtheycanoperateonnetswith generalenabling

predicateand state changefunctions,suchasarepresentin stochasticactivity networks

[9, 10]. In addition, they canobtaina solutionwith little additionalmemory,or perhaps
evenlessmemorythanneededby SGSPNsolvers,whileat thesametimeusingGauss-Seidel

or variants.However,theprototypeimplementationdescribedin [3]generatesdataat about

440Kbyte/secondonaHP C110.Although[3]introducesiterativemethodsthat areusually

moreeffectivethan Jacobior the Powermethodin their useof data, the overallsolution

speedfor thesemethodswill besomewhatslowerthan for Kronecker-basedmethods,but

still reasonable,giventhat theycanbeusedwithoutrestrictionson thestructureof amodel.

Thefinal classweconsideredwasthat of disk-basedmethods,wherethe workstation

diskholdsanencodingof the state-transitionmatrix. If wecan find an iterativemethod

that accessesdata from the state-transition-ratematrix in a regularwayandusea clever

encoding,diskscandeliverdata to an iterativealgorithmat a high rate (5 Mbyte/second

or higher)with low CPUoverhead.Furthermore,highperformancedisksare inexpensive

29

relative to the costof RAM, so wewould like to find a way to utilize diskseffectively.

Experimentalresultsshowthat if wecando both disk I/O and computationin parallel,

wecanperformGauss-Seidelat a rate of 5 Mbyte/secondwhileusingthe CPUonly 30%

of the time. Thusdisk-basedmethodshavethe potentialto greatlyoutperformKronecker

and on-the-flymethods,at the costof providinga disk that is largeenoughto hold the

state-transition-ratematrix of the Markovmodelbeingsolved.The challengeis to find a

moreeffectivesolutionmethodthat hasadataconsumptionrateof about5 Mbytes/second

at 80%CPUutilization.

Clearly,the methodof choicedependson the natureof the modelbeingsolved,and

the hardwareavailablefor the solution. If the state-transition-ratematrix is too large

to fit on availabledisk spaceand the modelmeetsthe requirementsof Kronecker-based

methods,thentheyshouldbeused.If the modeldoesnot fit ondiskanddoesnot meetthe

requirementsof Kronecker-basedmethods,on-the-flymethodsshouldbe used.However,

SCSIdisksare inexpensiverelativeto RAM (in September1996,approximately$1400for

4 GbytefastwideSCSI),sospacemayinexpensivelybemadeavailableto storethe state-

transition-ratematrix. Sinceasinglediskcanprovidethehighdataproductionrateonlyfor

sequentialdiskaccess,theefficiencyof disk-basedmethodswill dependonwhetherwecan

find a solutionalgorithmthat canmakeeffectiveuseof the data in the sequentialmanner.

Wediscusshowto do this in the followingsections.

III Tool Architecture and Implementation

In this section,wediscussthearchitectureof our tool andits implementationonanHP

workstation. In particular,wediscussthe basicblockGauss-Seidel(BGS)algorithmand

howit mapsontoa programor setof programsthat run ona workstation. An important

issuewesolveis howto effectivelydo computationand disk I/O in parallel. We develop

a flexibleimplementationwith manytunableparametersthat canvary widelyondifferent

hardwareplatformsandmodels.

The mathematicsof BGSis generallywell known(see[12],for example).Wewish to

solvefor the steadystateprobabilityvector_rgivenby 7rQ= 0. To review BGS briefly,

partition the state-transition-rate matrix Q into N x N submatrices of (roughly) the same

3O

size,labeledQij. BGS then solves

i-[(k+l)_ (_ lq(k+l)O ..i '_ii = -- **j ",_3z q"

\j=l j=i+l

(3.1)

for Hi for i ranging from 1 to N, where Hi is the corresponding subvector of 7r. This is

called the k-th BGS iteration. Solving for Hi can be done by any method; our tool uses

(point) Gauss-Seidel. One Gauss-Seidel iteration to solve (3.1) is called an inner iteration,

and solving (3.1) for 1 < i < n is an outer iteration.

The sequential algorithm for a single BGS iteration follows directly. In particular, let

r E 7_n be an auxiliary variable.

for i = 1 to N

r--0

forj=l toN[j_i

r = r -- HjQji

Solve HiQii = r for Hi

One can easily see that the access to Q is very predictable, so we may have blocks of Q

ordered on disk in the same way that the program accesses them. This way the program

accesses the file representing Q sequentially entirely throughout an iteration. One could

then easily write an implementation of BGS and a utility to write Q appropriately to a file.

What is not trivial is to build a tool that overlaps computation (the solution of IIiQii = r)

and reading from disk in a flexible, efficient way.

Tool Architecture Our solution to this is to have two cooperating processes, one of which

schedules disk I/O, and the other of which does computation. Obviously, they must commu-

nicate and synchronize activity. We use System V interprocess communication mechanisms

since they are widely available and simple to use. For synchronization, we use semaphores,

and for passing messages, such as a block of Q, we use shared memory. We call the process

that schedules I/O the I/O process, and we call the process that solves HiQii = r the com-

pute process. To minimize memory usage, we want to have as few blocks of Q in memory

at one time as possible, so we must be careful how we compute the step r = r - FIjQji,

Vj _ i. For simplicity, we assign the task of computing r to the I/O process.

We first looked at several large matrices that were generated by GSPN models. (We

looked at GSPNs because they can easily create large transition rate matrices, not because

31

our solutiontechniqueis limited to them.) We noticedthat the matrix is usuallyvery

banded;that is,for reasonablechoicesfor N, the number of non-zero elements in the blocks

Qi,j : [i - Jl > 1 is small, if not zero. By lumping all the blocks in a column into a smaller

number (three) of larger blocks, we can eliminate the overhead of reading small or empty

blocks. For the i-th column, we call Qi,i the diagonal block; Qi-l,i is the conflict block; all

other blocks are lumped into a single block that we call the off block. We use the term off

block because it includes all the off diagonal blocks except the conflict block. Let D represent

the diagonal block, C the conflict block, and O the off block. The following represents a

matrix where N = 4.

T[D I o Ic'
C D 0/o oo/

\ O LCID /

The reason we have a conflict block will be apparent soon.

Lumping several blocks into the off block complicates 3.1), but does not require any

extra computation. The actual mechanics of the computation of IIQoff,i are no different than

for the computation of IIjQji. For the formula r = IIQoff,i, we compute r = _t#i,i-1 IIkQki.

We may now compute r the following way:

r = -HQoff,i

r = r -- rli_lQconflict,i

Let us denote ri = HiQii to distinguish between different r vectors. In order to make

the computation and disk I/O in parallel, the program must solve IIiQii = ri while at

the same time compute ri+l. Therefore, while the compute process is solving HiQii = ri,

the I/O process is prefetching Qi+l,i+l, and reading Qoff,i+l and Qconflict,i+l to compute

ri+l. Notice that when computing ri+l, we need the most recent value of Hi to multiply

by Qconitict,i, which introduces a data dependency. Thus, we can not completely compute

ri+l while in parallel computing Hi. (We could also use a less recent value of Hi, but that

would reduce the effectiveness of BGS.)

Finally, we add synchronization to ensure that the I/O process has the most recent

version of Hi to compute ri+l. The full algorithm we use is presented in Figure 3.2. We

used a large, shared memory array to represent the steady state probability vector H, two

shared diagonal block buffers Qdiag0 and Qdiagl, and two r vectors r0 and rl. The processes

32

Sharedvariables:H, Qdiag0, Qdiagl, r0, rl

Semaphores: $1 locked, $2 unlocked

Compute Process

Local variable (unshared): t
t= 0

while not converged
for i = l to N

Lock(S1)

for j = 1 to MinIter

Do GS iteration: HiQdiagt = rt
j = MinIter + 1

while j < MaxIter and

I/O process not blocked on $2

Do GS iteration: IIiQdiagt = rt
j=j+l

Unlock(S2)

t={

I/O Process

Local variable (unshared): t, Qtmp
t=0

do forever

fori=l toN

Qdiagt = disk read(Qii)

Qtmp = disk read(Qoff,i)

rt = -1-IQtmp

Qtmp = disk read(Qconflict,i)

Lock(S2)

rt = rt -- H/-1Qtmp

Unlock (SI)

t={

Figure 3.2: Compute and I/O processes for BGS algorithm.

share two diagonal block and r variables so that one can be used to compute (3.1) while the

other one is being prepared for the next computation. The processes also share two locking

variables, $1 and $2, which they use to communicate and control the relative progress of

the other process.

Compute Process We first explain the compute process. A local variable t alternates

between 0 and 1, which indicates which of the two shared block and r variables the process

should use. After each step, t is alternated between 0 and 1, which we denote t = {. The

function Lock(S1) will lock $1 if $1 is unlocked_ if $1 is already locked, it will block until

$1 is unlocked (by the I/O process); then it will lock $I and proceed. While the compute

process is blocked on $1, it uses no CPU resources.

The compute process has two parameters, MinIter and MaxIter. The compute process is

guaranteed to do at least MinIter Gauss-Seidel inner iterations to approximately solve (3.1).

Then the compute process will proceed to do up to MaxIter iterations or until the I/O

process is complete with the current file I/O and is waiting for the compute process to

unlock $2, whichever comes first. This allows the compute process to do a dynamic number

33

of Gauss-Seideliterations,dependingonhowlongthe I/O processtakesto do file I/O. We

ignoretheboundaryconditionsin thefiguresfor simplicity.If i - 1 = O, for example, then

we use N for i - 1 instead.

The convergence criterion we use in this tool is a modification to the liar(k+1) - _r(k)ll_

criterion. In particular, we compute IIrIlk+l) - Illk)ll for the first inner iteration and take

the maxlIIIl k+l) - IIlk)ll _ to be the number we use to test for convergence. We use this
i

for two reasons: the first inner iteration usually results in the greatest change of Hi, so

computing the norm for all inner iterations is usually wasteful, and the computation of

the norm takes a significant amount of time. We have observed experimentally that this

measured norm is at least as good as the the lilt(k+1) --Ir(k)llc_ criterion.

The dynamic nature of the iteration count is an interesting feature of this tool. If

the system on which the program is running is doing other file I/O and slowing the I/O

process down, the compute process may continue to proceed to do useful work. At some

point, however, additional Gauss-Seidel iterations may not be useful at all, presumably

after MaxIter inner iterations, so the process will stop doing work and block waiting for $1

to become unlocked. Choosing a good MinIter and MaxIter is difficult and requires some

knowledge about the characteristics of the transition rate matrix. If we allow the compute

process to be completely dynamic, some blocks may consistently get fewer inner iterations

and converge more slowly than other blocks, causing the whole system to converge slowly.

In Section IV, we show some experimental results of varying these parameters.

Input/Output Process The I/O process is straightforward. The greatest complexity

comes in managing the semaphores properly. This is a case of the classical producer-

consumer or bounded buffer problem, and we defer the reader to [13] or a similar text on

operating systems to show the motivation and correctness of this technique. The primary

purpose Of the I/O process is to schedule disk reads and compute ft. It does this by issuing a

C function to read portions of the file directly into the shared block variable or the temporary

block variable. Because the I/O process may execute in parallel with the compute process,

the I/O process may issue read requests concurrently with the computation, and since file

I/O uses little CPU (under 20%), wo can effectively parallelize computation and file I/O on

a modern, single-processor workstation.

This implementation of BGS uses relatively little memory. The size of the steady state

34

probabilityvectorH is proportionalto the numberof states,which is unavoidableusing

BGSoranyotherexactmethod.Otheriterationmethods,suchasJacobi,requireadditional

vectorsof the samesizeasl-I,whichourprogramavoids.Twodiagonalblocks,Qdiag0 and

Qdiagl, are necessary; the compute process requires one block to do the inner iteration, and

the I/O process reads the next diagonal block at the same time. Two r variables are also

required for the same reason. Finally, the I/O process requires a temporary variable Qtmp

to hold Qoff and Qconflict. We could eliminate Qtmp by instead using Qdiagt, but doing so

would require us to reverse the order in which we read the blocks, causing us to read Qdiagt

last. This would reduce the amount of time we could overlap computation and file I/O.

We chose to maximize parallelization of computation at the expense of a modest amount of

memory.

IV Results

To better understand the algorithms presented in the previous section, we implemented

them and tested the resulting tool on several large models presented in the literature. We

present the models here and discuss the performance measures we took in order to better

understand the issues in building and using a tool to solve large matrices, so we are not

so interested here in the results of the models as much as using the models to understand

the characteristics of our solver. All the solutions we present here, with the exception of

one, can be solved on our HP workstation with 128 Mbyte of RAM (without using virtual

memory) and 4 Gbyte of fast disk memory.

Kanban Model The Kanban model we present was previously used by Ciardo and

Tilgner [1, 2] to illustrate a Kronecker-based approach. They chose this model because

it has many of the characteristics that are ideal for superposed GSPN solution techniques,

and it also does not require any mapping from the product space to the tangible reachable

states. We refer to [2] for a description of the model and specification of the rates in the

model. Briefly, the model is composed of four subnets. At each subnet, a token enters,

spends some time, and exits or restarts with certain probabilities. Once the token leaves

the first subnet, it may enter the second or third subnet, and to leave the system, the token

must go through the fourth subnet. We chose to solve the model where the synchronizing

transitions are timed transitions.

35

N
1 160
2 4,600
3 58,400
4 454,475
5 2,546,432
6 11,261,376

States NZ Entries Size(MB) el e2 e3 e4 _-
616

28,128

446,400

3,979,850

24,460,416

115,708,992

0.008

0.34

5.3

47

290

1,367

0.90742 0.67136 0.67136 0.35538 0.09258

1.81006 1.32851 1.32851 0.76426 0.17387

2.72211 1.94348 1.94348 1.52460 0.23307

3.64641 2.51298 2.51298 1.50325 0.27589

4.58301 3.03523 3.03523 1.81096 0.30712

5.53098 3.50975 3.50975 2.07460 0.33010

Table 3.1: Characteristics and reward variables for the Kanban model.

Table 3.1 shows some information about the model and the corresponding transition rate

matrix. Here, N represents the maximum number of tokens that may be in a subnet at one

time. There are two important variables that we may vary, the number of blocks and the

number of inner iterations, that greatly affect performance. We present two experiments.

First, we vary the number of blocks while keeping the number of inner iterations fixed, and

second, we vary the number of inner iterations while keeping the number of blocks fixed.

For the first experiment, we use the Kanban model where N = 5. We divide the

transition rate matrix into 32 × 3 blocks, and perform a constant number of inner iterations.

We vary the number of inner iterations from 1 to 20. The results of the Solution execution

time and the number of BGS iterations are shown in the top two graphs in Figure 3.3. All

the timing measurements that we present in this paper are "wall clock" times. The plots

show the time to achieve three levels of accuracy based on the modified I IrI(k+l)- 1-I(k)ll_ <

{10 -6,10 -9,10 -12 } convergence criterion explained in Section III.

Figure 3.3 shows how doing an increased number of inner iterations yields diminishing

returns, so that doing more than about 7 inner iterations does not significantly help reduce

the number of BGS iterations. For this model, setting MaxIter to 6 or 7 makes sense. It

also shows that the optimal number of inner iterations with respect to execution time is 4.

For fewer than four inner iterations, the compute process spends time idle and waiting for

the I/O process. This leads us to choose MinIter to be 3 or 4.

It is interesting to note that solving this model with a dynamic number of inner iterations

takes 10,436 seconds, which is more time than is required if we fix the number of inner

iterations to be 3, 4, or 5 (10269, 10044, and 10252 seconds respectively). We observed that

some blocks always receive 4 or fewer inner iterations, while others always receive 7 or more.

This shows us several important things. First, some blocks always receive more iterations

than others, and we know that the solution vector will converge only as fast as its slowest

36

3OOOO

_000

20000

15000

5OOO

0
0

12000

11000

IOOOB

_ 7nf_

6_

i_ 5000
40OO

3f_3

2OOO

IO00
0

.e''
B"

S_ "J''_:_ ._ ..,/...._:

5 10 1.5 20 25
Number of Inner Iterations

......o....._..y "*°'a le-91e'6_....
le-12 -'_

/
/

//

1O 20 30 40 50 60 70 80 90
Number of Blocks

3OO

_0

2OO

150

100

50

o

220

Q

\

%

5 IO 15 20 25

Number of Inner [terations

Ic-6
le-9
10-12 .-_....

2OO

180

I60

140

120

10o

80

6O

40

20

le-6
...a'" _ ''_ le*9 "

• ._..... le-12 '_....

__--"

/'

.../"

.f

IO 20 30 40 50 60 70 80 90
Number of Blocks

Figure 3.3: Performance graphs of Kanban model (N = 5).

converging component. Second, we argued above that doing more than 7 inner iterations

is wasteful, so allowing the number of inner iterations to be fully dynamic is wasteful since

the I/O process does not read data quickly enough to keep the compute node doing useful

work. Finally, if the compute proCess is always doing inner iterations, it checks to see if

the I/O process is blocked on $2 only after completing an inner iteration. This requires the

I/O process to always block on $2 and wait for the compute process to complete its inner

iteration, which is wasteful since the I/O process is the slower of the two processes.

For the next experiment, we set the number of inner iterations to be 5, vary the number

of blocks, and observe convergence rate, execution time, and memory usage. The bottom

two plots of Figure 3.3 range the number of blocks from 8 to 64 and plot execution time

and number of iterations respectively for the convergence criteria IlII(k+l) --II(k)lIc_ <

{10 -6, 10 -9, 10-12}. Table 3.2 shows how memory usage varies with the number of blocks.

Notice that between 8 and 64 blocks, the execution time is nearly double while the memory

usage is about one third. We see that there is clearly a memory/speed tradeoff. Note that

the solution vector for a 2.5 million state model alone takes about 20 Megabytes of memory.

Finally, as a basis for comparison_ we present results given in [2] in Table 3.3 and compare

the solution times to those of our tool. The column titled 'Case 1' represents the tool in [2]

with mapping from the product space to tangible reachable states enabled, while 'Case 2'

37

N Memory
(MB)

8 95
12 71
16 59
24 48
32 40
40 37
48 35
56 33
64 32

N
1
2
3
4
5
6

Case1 Case2 BGStime No. Blocks Memory
is

13s

310 s

4,721 s

22,215 s

1S

2s

2s

856 s

6,055 s

225 s

2,342 s

18,563 s

4

16

128

28 MB

59 MB

111 MB

Table 3.2: Number of

blocks versus memory.

Table 3.3: Comparison of performance,

is with no mapping (an idealized case). Cases 1 and 2 are performed on a Sony NWS-

5000 workstation with 90 MB of memory. We present no results for N = 1, 2, 3 because

the matrix was so small that the operating systems buffered the entire file in memory. In

addition to computing the reward variables (see Table 3.1) for the Kanban model to greater

accuracy than [2], we were also able to solve for the case where N = 6.

Courier Protocol Model The second model we examine is a model of the Courier

protocol given in [8, 14]. This is a model of an existing software network protocol stack

that has been implemented on a Sun workstation and on a VME bus-based multiprocessor.

The model is well specified in [8, 14]. The GSPN models only a one-way data flow through

the network, For our experiment, we are only interested in varying the window size N. The

transport space and fragmentation ratio is kept at one. Varying N corresponds to initially

placing N tokens in a place, and it has a substantial impact on the state space size!

Table 3.4 shows the characteristics of the model. The column 'Matrix Size' contains the

size of the matrix in megabytes if the matrix were to be kept entirely in memory. One can

see that this transition-rate matrix is less dense than the one for the Kanban model. For

this model, we wish to show how the solution process varies as the size of the problem gets

larger. We set MaxIter to be 6 and let N range. Table 3.4 summarizes these results.

There are several interesting results from this study. First, we note that for N < 3, the

file system buffers significantly decrease the conversion and solution times, so they should

not be considered as part of a trend. More traditional techniques would probably do as

38

States
Nonzero
Matrix
Blocks
GenerationTime (s)
ConversionTime (s)
SolutionTime (s)
Iterations
Memory(MB)

N=I N=2 N=3 N=4 N=5 N 6

11,700 84,600 419,400 1,632,600 5,358,600 15,410,250

48,330 410,160 2,281,620 9,732,330 34,424,280 105,345,900
0.6 5 28 118 414 1,264

4 4 4 32 64 128

5 38 218 938 3,716 11,600

3 24 136 581 2,076 "14,482

2 16 143 1,138 6,040 20,742

18 19 23 49 69 85

0.4 3.4 18 21 57 144

(*) Time abnormally high because the computer was not dedicated.

Table 3.4: Characteristics of Courier protocol model.

well or better for such small models. For N > 3, the model becomes interesting. We wrote

our own GSPN state generator for these models, and it was optimized for memory (so we

could generate large models), not for speed. It was also designed to be compatible with the

UltraSAN solvers and reward variable specification. The conversion time is the time it took

to convert the Q-matrix in UltraSAN's format to one used by the tool, which involves taking

the transpose of Q and converting from an ASCII to binary floating point representation.

The conversion time shown for N -- 6 is the wall clock time, but it is abnormally large

since it was not run in a dedicated environment. We estimate from the user time that the

conversion process would take about 7,000 seconds on a dedicated system.

The data gives us a rough idea about the relative performance of each step in the solution

process. The conversion process takes between half and two thirds the generation time. We

believe that much of the conversion time is spent translating an ASCII representation of a

real number into the computer's internal representation. The solution times are the times

to reach the convergence criterion IIHI k+l)- IIlk)tl_ < 10-12 described above, and are

roughly twice the generation times. This shows that the solution process does not take a

disproportionate amount of time more than the state generation or conversion process.

Another interesting observation of this model is that in the case where N = 6, the

transition-rate matrix generated by the GSPN state generator (a sparse textual represen-

tation of the matrix) would be larger than 2 Gbytes, which is larger than the maximum

allowable file size on our workstation. To solve this system, we rounded the rates to 6

decimal places, This obviously affects the accuracy of the solutions. There are obvious and

simple ways to use multiple files to avoid this problem; we simply state this observation to

39

A
Psend

P_ ec_g

Psessl

Psess2

Ptranspl

Ptransp2

N=I N=2 N=3 N=4 N=5 N=6

74.3467

0.01011

0.98141

0.00848

0.92610

0.78558

0.78871

120.372

0.01637

0.96991

0.01372

0.88029

0.65285

0.65790

150.794

0.02051

O.9623O

0.01719

0.84998

0.56511

0.57138

172.011

0.02334

0.95700

_0.01961

0.82883

0.50392

0.51084

187.413

0.02549

0.95315

O.02137

0.81345

0.45950

0.46673

198.919

0.02705

0.95027

0.02268

0.80197

0.42632

0.43365

Table 3.5: Reward variables for Courier protocol model.

give the reader a feel for the size of the data that the tool is manipulating. Also, of the

144 Mbytes necessary to compute the solution, 118 Mbytes of it are needed just to hold the

solution vector.

In Table 3.5 we show several of several of the reward variables in the model as N

varies from 1 to 6. The), we compute here corresponds to measuring Atsp in the model,

which corresponds to the user's message throughput rate. The measures A/rg can easily

be computed as Aft9 = Aqt/q2. Similarly, _ack :)_lsp-'}-Afrg" From this, we can see

how the packet throughput rate (A) increases as the window size increases. Other reward

variables are explained in [8], and they correspond to the fraction of time different parts of

the system are busy. We note that the values we computed here differ from those Li found

by approximate techniques [8, 14]. We suspect that Li used a fragmentation ratio in his

approximation techniques that is different (and unpublished) from the ratio for which he

gives "exact" solutions because we were able to reproduce the exact solutions.

V Conclusion

We have described a new tool for solving Markov models with very large state spaces.

By devising a method to efficiently store the state-transition-rate matrix on disk, overlap

computation and data transfer on a standard workstation, and utilize an iterative solver

that exhibits locality in its use of data, we are able to build a tool that requires little more

memory than the solution vector itself to obtain a solution. This method is completely

general to any model for which one can derive a state-transition-rate matrix. As illustrated

in the paper, the tool can solve m6dels with 10 million states and 100 million non-zero

entries on a machine with only 128 Mbytes of main memory. Because we make use of an

innovative implementation using two processes that communicate via shared memory, we

4O

areableto keepthe computeprocessutilizing the CPUapproximately80%of the time.

In additionto describingthetool, wehaveillustratedits useon two large-scalemodels:

a Kanbanmanufacturingsystemandthe Courierprotocolstackexecutingona VME bus-

basedmultiprocessor.For eachmodel,wepresentdetailedresultsconcerningthe time and

spacerequirementsfor solutionssothat our tool maybecomparedwith existingandfuture

tools. The resultsshowthat the speedof solutionis muchfasterthan thosereportedfor

implementationsbasedonKroneckeroperators.Theseresultsshowthat ourapproachis the

currentmethodof choicefor solvinglargeMarkovmodelsif sufficientdiskspaceis available
to holdthestate-transitionrate matrix.

REFERENCES

[1] G. Ciardo,"Advancesin compositionalapproachesbasedon Kroneckeralgebra:Ap-

plicationto the studyof manufacturingsystems,"in Third International Workshop on

Performability Modeling of Computer and Communication Systems, Bloomingdale, IL,

Sept. 7-8, 1996.

[2] G. Ciardo and M. Tilgner, "On the use of Kronecker operators for the solution of

generalized stochastic Petri nets," ICASE Report #96-35 CR-198336, NASA Langley

Research Center, May 1996.

[3] D. D. Deavours and W. H. Sanders, " 'On-the-fly' solution techniques for stochastic

Petri nets and extensions," to appear in Petri Nets and Performance Models, 1997.

[4] S. Donatelli, "Superposed generalized stochastic Petri nets: Definition and efficient

solution," in R. Valette, editor, Application and Theory of Petri Nets 1994, Lecture

Notes in computer science 815 (Proc. 15th Int. Conf. on Application and Theory of

Petri Nets, Zaragoza, Spain), pp. 258-277, Springer-Verlag, June 1994.

[5] G. Horton, "Adaptive Relaxation for the Steady-State Analysis of Markov Chains,"

ICASE Report #94-55 NASA CR-194944, NASA Langley Research Center, June 1994.

[6] P. Kemper, "Numerical analysis of superposed GSPNs," in Proc. Int. Workshop on

Petri Nets and Performance Models (PNPM'95), pp. 52-61, Durham, NC, Oct. 1995.

IEEE Comp. Soc. Press.

41

[7] P. Kemper, "NumericalAnalysisof SuperposedGSPNs,"in IEEE Transactions on

Software Engineering, 1996, to appear.

[8] Y. Li, "Solution Techniques for Stochastic Petri Nets," Ph.D. Dissertation, Department

of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, May

1992.

[9] J. F. Meyer, A. Movaghar, and W. H. Sanders, "Stochastic activity networks: Struc-

ture, behavior, and application," In Proc. International Workshop on Timed Petri

Nets, pp. 106-115, Torino, Italy, July 1985.

[10] A. Movaghar and J. F. Meyer, "Performability modeling with stochastic activity net-

works," In Proc. 1984 Real-Time Systems Syrup., Austin, TX, December 1984.

[11] W. H. Sanders, W. D. Obal II, M. A. Qureshi, F. K. Widjanarko, "The UltraSAN

modeling environment," in Performance Evaluation, pp. 89-115, Vol. 24, 1995.

[12] W. J. Stewart, "Introduction to the Numerical Solution of Markov Chains," Princeton

University Press, 1994.

[13] A. S. Tanenbaum, Modern Operating Systems, Prentice Hall, 1992.

[14] C. M. Woodside and Y. Li, "Performance Petri Net Analysis of Communications Pro-

tocol Software by Delay-Equivalent Aggregation," in Proc. Fourth Int. Workshop on

Petri Nets and Performance Models, pp. 64-73, Melbourne, Australia, Dec. 2-5, 1991.

42

Chapter 4

A NEW METHODOLOGY FOR

CALCULATING

DISTRIBUTIONS OF REWARD

ACCUMULATED DURING A

FINITE INTERVAL

43

Abstract

Markov reward models are an important formalism by which to obtain dependability

and performability measures of computer systems and networks. In this context, it is

particularly important to determine the probability distribution function of the reward

accumulated during a finite interval. The interval may correspond to the mission period in

a mission-critical system, the time between scheduled maintenances, or a warranty period.

In such models, changes in state correspond to changes in system structure (due to faults

and repairs), and the reward structure depends on the measure of interest. For example,

the reward rates may represent a productivity rate while in that state, if performability is

considered, or the binary values zero and one, if interval availability is of interest. This

paper presents a new methodology to calculate the distribution of reward accumulated over

a finite interval. In particular, we derive recursive expressions for the distribution of reward

accumulated given that a particular sequence of state changes occurs during the interval,

and we explore paths one at a time. The expressions for conditional accumulated reward are

new and are numerically stable. In addition, by exploring paths individually, we avoid the

memory growth problems experienced when applying previous approaches to large models.

The utility of the methodology is illustrated via application to a realistic fault-tolerant

multiprocessor model with over half a million states.

Keywords: Markov Reward Models, Performability, Interval Availability.

I Introduction

Performability evaluation is an important approach for calculating the performance of a

dependable computing system or network, taking into account changes in performance due

to faults. Many methods have been proposed to evaluate system performability, but one of

the most popular has been through the use of reward models [1, 2]. In this context, it is

important to determine the probability distribution function of reward accumulated during

a finite interval. The interval may correspond to the mission period in a mission-critical
o

system, the time between scheduled maintenances, or a warranty period.

Most early work in this regard has been limited to acyclic Markov reward models (see,

for example, [2, 3, 4, 5, 6]). Determining the distribution of reward accumulated over a

44

finite interval for general (possibly cyclic) Markov reward models is more difficult due to

the possible presence of an infinite number of paths. The first attempt to solve such models

was made by Kulkarni et al. [7]. They numerically inverted an expression obtained in the

transform domain to obtain a solution. Later Smith et al. [8] presented an improved version

of the algorithm in [7], with a computational complexity of O(n3), where n is the number

of states. In [9], Pattipati et al. applied partial differential equation techniques to compute

system performability.

Also notable is the work of de Souza e Silva and Gail, who were the first to present a

performability solution based on uniformization [10]. They formulated the probability dis-

tribution of reward accumulated over a finite interval by first conditioning on the number

of transitions n of a uniformized process and then further conditioning on vectors corre-

sponding to the number of visits to states with different rewards, given n. This algorithm

was limited in applicability since the storage and computational complexity was combina-

torial with the number of dist.inct rewards. Two attempts have been made to deal with this

complexity. In particular, Donatiello and Grassi [11] presented an algorithm with a poly-

nomial complexity in number of distinct rewards by combining uniformization and Laplace

transform methods. In addition, in [12], de Souza e Silva and Gail presented a significant

improvement on their previous algorithm, albeit limited to rate-based reward models. The

storage complexity of their new algorithm is independent of the number of distinct rewards

assigned to the states of the Markov process.

In spite of these significant advances, the developed algorithms have been limited to

solving small models, and for short time intervals. The reasons are two-fold: 1) the storage

complexity is still polynomial with number of states and transitions of the uniformized

process, and 2) in addition to the stated storage complexity, the algorithm requires the

storage of the state transition matrix of the entire subordinated Markov process. When

state spaces are large (as is often the case) or the interval is reasonably long (again, as is

typical), these storage requirements make the computation of distribution of accumulated

reward over a finite interval very difficult.

In this paper, we present a path-based approach (used previously to solve dependability

models [13, 14]) to compute the distribution of time-averaged reward accumulated over a

finite interval for general (possibly c;clic) reward models. In doing so, we trade storage com-

plexity for time complexity. We show that the trade is advantageous if the probability mass

is concentrated on a reasonable number of paths (up to tens of millions). Moreover, to use

45

the path-basedapproacheffectively,wepresenta numericallystableand computationally

efficientalgorithmto computethe conditionaldistribution of accumulatedrewardgivena

path. This formulationis newandnotbasedon theoftenusedWeisbergresult [15].Finally,

we illustrate the usefulnessof the path-basedapproachby computingthe distribution of

time-averagedaccumulatedrewardoverafinite intervalof a highlyredundantfault-tolerant

multiprocessorsystem.The newapproachpresentedin this paper is significantin that it

canbeappliedto muchlargersystemsthanpreviouslypossible,andit isnumericallystable.

II Background

Uniformization(alsoknownasJenson'smethodand randomization)is a well-known

methodfor computingthe state-occupancyprobabilitiesof a Markovprocessat specific

time t. Its formulation involves construction of a discrete-time Markov process and Poisson

process from an original continuous-time process. In particular, consider a continuous-time

time-homogeneous Markov process {Xt : t >_ O} with generator matrix A and initial state

distribution vector _'0. Let)_ be greater than or equal to the maximum departure rate from

any state in the process, and {Zn : n E N} be a discrete-time time-homogeneous Markov

chain defined on the same state space as (Xt : t > O} with single step transition matrix

P = A/)_ + I. Furthermore, let {Nt : t >_ O} be a Poisson process with rate _. Then _-t,

the row vector of state occupancy probabilities at time t, can be expressed as

e- t ()7rt = T_OPn.
n:O

de Souza e Silva and Gail [10, 16] formulated the probability distribution function (PDF)

of the accumulated reward averaged over a finite interval of time using uniformization

and several additional properties of a Markov chain subordinated to a Poisson process.

Specifically, consider that the Poisson process has arrivals at instances T1 < T2 < ... < Tn

in an interval (0, t). These are the instances when the subordinated Markov chain makes

transitions. Furthermore, consider n independent random variables U1, U2, ... Un uniformly

distributed on the interval (0, 1). Let U(1), U(2), ..., U(n) be their order statistics. It is well

known (e.g., [17]) that the joint distribution of the transition times of subordinated Markov

chains, given n transitions of the Poisson process in an interval (0, t), is identical to the

joint distribution of the order statistics of n uniformly distributed random variables over

46

the interval (0,t). Moreover, it can easily be shown that tUi, the product of the interval t

and the random variable U/, is uniformly distributed over an interval (0, t). Therefore

P{T1 <_ tl,T2 <: t2,...,Tn <_ tn} = P{tU(1) <_ tt,tU(2) <_ t2,...,tU(n) <_ tn}, (4.1)

for tl < t2 < ... < tn.

Given n transitions of the Poisson process, each path of the subordinated Markov chain

consists of n + 1 sojourn times. Using the result from Equation 4.1, these n + 1 sojourn

times Y/ can be represented as II1 = tU(1),]I2 = t(U(2) - U(1)), ..., Yn+l = t(1 - U(n)). It

is also known [18] that the random variables Y/, i = 1, 2,..., n + 1, are exchangeable. In

particular, exchangeability says that

P(Y1 <_ tl,]I2 <_ t2,..., Yn+l <_ t} = P(YJl <- tl, YJ2 <- t2,..., Yj_+I <_ t},

for all permutations of ji's from 1, 2,..., n + 1. Therefore, by using order statistics, the

sequence of sojourn times in a state trajectory can be altered. In particular, suppose all

paths with n transitions of the uniformized process are divided into sets such that each path

in a set has an equal number of visits to states with identical rate rewards. Then exchange-

ability enables us to describe all paths within each set by a vector k = (kl, k2,..., kK+l),

where K + 1 is the number of distinct rate rewards and ki, i = 1, 2,..., K + 1, is equal to

the number of visits to states with rate reward i. (Note Ikl = n + 1.)

Using these ideas, de Souza e Silva and Gail formulated the PDF of reward accumulated

over a finite interval by further conditioning on the vectors k possible for each n. Accord-

ingly, P{AR(t) <_r}, the distribution of the time-averaged reward accumulated over a finite

interval, was expressed as

(3O

e-_t"'t'nn!(X__ P{k I n}P{AR(t) _< r I n,k},P{AR(t) < r} =
n=o vk

(4.2)

where P{k I n} is the probability of vector k given n transitions.

The exact solution for P{AR(t) < r} is not possible in this formulation, since the first

summation in (4.2) is over an infinite set. However, as shown in [10, 16], a solution with

error bound can be computed by truncating the first summation to some finite number N.

In particular, to a certain error bound, the probability distribution of time-averaged reward

47

accumulatedovera finite intervalcanbe formulatedas

N e-_t(/_t)n
P{AR(T) < r} = _, n! _ P{k I n}P{AR(T) <- r In, k}.

n=O vk
(4.3)

For Markov processes with large state spaces, second summation is challenging to com-

pute due, primarily, to the computation of P{k I n}. This computation requires knowledge

of all k vectors that are possible given n - 1 transitions of the uniformized process and

the probability of occurrence of paths within these sets of vectors. Since there can be

K + n _ k vectors for 1 transitions and the number of whichpathsn can generate a
n /

vector k can be equal to the size of the state space, the task of computing PDF for large

state spaces becomes immensely difficult. Moreover, this approach also requires the com-

plete generation of the state space prior to starting the PDF computation. Generation of

large state spaces in itself is an intensively memory complex problem.

In [12], de Souza e Silva and Gail improved on their earlier algorithm by finding a

recursion which, for a given number of transitions, depends on sets of vectors k. Instead

of computing path probabilities for each vector k, they directly computed the conditional

distribution given n for sets of k vectors. Their new algorithm significantly improved the

memory complexity since individual k vectors no longer need to be computed. However,

due to the recursion on sets of k vectors, their algorithm needs a separate computation for

every point on the probability distribution curve. When both rate and impulse rewards are

used, their algorithm has O(dMN2_(N, r)) storage requirement [19], where d is the average

number of non-zero entries in the transition matrix, M is the state-space size, N is the

truncation point of the infinite series, and _(N, r) is the number of distinct values obtained

by adding any combination of N impulse rewards that are less than r. Furthermore, their

algorithm operates on the state transition matrix of the subordinated Markov process,

which also must be stored. While the new algorithm takes significantly less memory than

the original algorithm, it still requires prohibitively large amounts of memory for realistically

sized models, which may have hundreds of thousands of states. The next section presents

a formulation that avoids this problem, albeit at the cost of additional time, and avoids

numerical difficulties in the formulation presented in [10].

48

III Path-Based Algorithm

In this newformulation,wecomputethe probability distribution functionof the time-

averagedrewardaccumulatedovera finite interval of time by conditioning on possible

paths, rather than k vectors,that canoccur. Thesepathsaregeneratedin a depth-first

searchmanner,from a higher leveldescription(suchas a SAN [20]), thus avoidingthe

memorycomplexityproblemsassociatedwith previousapproaches.However,this gain is

not free,sincethe approachresultsin an increasedtime complexity.In the worstcase,the

numberof pathsof the uniformizedprocessthat must begeneratedgrowsexponentially

with an increasein the truncationpoint. However,if theuniformizedprocesshasa sparse

state-transitionprobabilitymatrix or is suchthat the probabilitymassis concentratedon

a reasonablenumberof the manypaths, then the depth-firstsearchapproachbecomesa
reasonablechoice.

In this case,wecancomputethe solutionwith a reasonableerror boundby only con-

sideringthe setof probablepaths.Moreover,if weknowthe highestrate of the underlying

Markovprocess(aswouldbe the caseif it weregeneratedfrom a higher-levelformalism),

thenthedepth-firstsearchapproachdoesnot evenrequiregenerationof thestatespaceprior

to the solution. In this case,the pathsof the uniformizedprocesscanbeexploredwithout

generatingthe completestate space,and the solutionfor the time-averagedaccumulated

rewardcanbeobtainedon thefly.

The depth-firstsearchapproachfor computingthe PDF of the time-averagedreward

accumulatedoverafinite intervalisbasedonexploringpathsofthe uniformizedprocessand

computingconditionaldistributiongiventhe path. To understandthis approach,wefirst

look at a path in the uniformizedprocess.A path in the uniformizedprocesscorresponds

to a sequenceof statesthroughthestatespace.Let < so, sl,..., Sn > be a sequence in the

uniformized process that occurs in time (0, t). The probability of its corresponding path

in time (0, t) can be obtained by computing P{so, sl,..., Sn I n} = p(so, sl) × p(sl, s2) x

• .. p(Sn-1,8n), and P{n},

P{path} = P{so,sl,...,sn A n} = P{n}P(so,sl,...,sn In}

where p(si, sj) is the transition probability from state si to sj in the discrete time embedded

process.

For the path-based approach, the distribution of the time-averaged reward accumulated

49

overa finite intervalcanbeexpressedas

P{AR(t) < r} = _ P{path}P{AR(t) <_ rlpath}, (4.4)
pathEP

where P is the (possibly infinite) set of possible paths in the process.

As with the formulation in (4.2), an exact solution of (4.4) is not possible because there

are an infinite number of paths in a uniformized process. Since our intent is to only consider

paths that are significant relative to the solution, we limit the number of paths considered

by discarding those whose path probabilities are smaller than a specified value, defined as

w. Let Pw denote the set of paths that have path probabilities greater than or equal to w.

Accordingly, PDF can be expressed as

P{AR(t) < r} = _ P{path}P{AR(t) < rlpath }. (4.5)
path E Pw

As with the previous approach, considering a finite number of paths results in an error

in the solution which can be bounded. In particular, let E(w) be the error induced by

discarding paths for which P{path} < w and 0 <w < 1. In order to bound E(w), we first

compute E(path), the error produced by discarding a particular path. Let this path consist

of the sequence < so, sl, • • •, sn >. Note that by discarding a path, we are also discarding

all longer paths which have states so, st,. •., sn as their first n states. We first look at the

error induced by discarding the path of length n. In particular, the error will be

E(path)
n!

P{so, sl,..., sn I n}P{AR(t) < r]path}.

Since the conditional distribution 0 < P{AR(t) < y]path} < 1 Vy, we can bound the error

by assuming it is equal to 1. This implies that

E(path) < e-_t()_t)nP{so, st,...n! ,Sn In}.

Now, since the entries in a row of a transition matrix sum to 1, the sum of the proba-

bilities of all paths of length n + 1 discarded due to the discarding of the path with state

sequence < so, sl,..., Sn > can be bounded by

P{so, 81,..., Sn+l [n -t- 1} x

V$n+l

e- t(At)n+ 1
(n --}-1)! -- P{8°' 81""' 8n I ?2}e-Xt()_t)n+l(n+ 1)!

5O

Usingthe aboveargumentrepeatedly,the total error (denotedE*) induced by discarding

all paths of length n or longer with starting states so, sl,.., sn can be bounded by

(X3

E*(path) < P{so, sl,...,sn ln}×_-_.e-_t(At)i
- i!

i-=n

n-1 e_;_t()_t)i_- P{so, Sl,...,Snln}× 1 -_ - . .
i=0 i!]

Hence, a bound on the total error induced by discarding paths can be computed as

E(w) < _ E*(path),
pathEP D (w)

where pZ)(w) is the set of paths discarded, during exploration, since they do not meet the

criteria described.

IV Calculation of Conditional Distribution

Given the approach of the previous section, we need a way to compute the distribution

of time-averaged reward accumulated over an interval of time conditioned on a particular

path. Finding an efficient and numerically stable way to compute this distribution is the

key to the development of a methodology that can be applied to realistically sized systems.

Since our process is uniformized with paths that are exchangeable (see Section II), the

conditional accumulated reward will be the same for all paths that have the same number

of visits to states with particular rate rewards. In other words, for all paths with k vector

k = kl,k2,... ,kK+l such that [k[= n + 1,

P{AR(t) < r I path} = P{AR(t) < r I n,k}.

This suggests that, in principle, we could use the result from Weisberg [15], which gives

the probability distribution function of a linear combination of selected order statistics

of i.i.d, uniform random variables. Unfortunately, while this is correct, it is numerically

unstable for practical problems, since for large n, it requires the subtraction of extremely

large numbers (generated from factorials of large numbers) with nearly identical magnitude

at multiple points in the algorithm. Multiple precision arithmetic could potentially be used

to avoid this problem, but it is extremely difficult to know what precision to use, because

of the multiple subtractions.

To avoid these problems, we have developed a new algorithm that does not make use of

the Weisberg result. It is based on an alternative formulation given in [21] and makes use of

51

threenewlemmas(presentedin thefollowing)that reduceboth theamountof computation

and the magnitudeof numbersthat mustbe storedasintermediateresults•Furthermore,

weare ableto formulatethe expressionin a form that requiresvery few subtractionsof

numberswith largebut nearlyidenticalmagnitudeand,hence,areableto determineexactly

the numberof digits requiredto achievea desiredprecisionin the result•

In particular, the new formulationis basedon expressingthe problemas the linear

combinationof orderstatistics,rewritingtheseasa linearcombinationof Drichlet random

variables,andthencomputingthe distributionof thecombination.(TheDrichletdistribu-

tion is widelyusedin statisticalmathematics,see[22]for example.)Specifically,consider,

aswasdonepreviously,that K + 1 different rate rewards are assigned to the states of the

uniformized process. Furthermore, suppose that rate rewards are ordered such that

rl > r2 > ... :> rK+l __ O•

Then define l_ to be the sum of the lengths of sojourn times with rate reward ri. After doing

this, the conditional averaged accumulated reward, AR(t), given n and k, can be expressed

as

1 K+I

AR(t l n, k) = _ _ ri x li.
i----1

Now recall that using the result from (4.1), the n + 1 sojourn times Y/can be represented

as Y1 = tU(1), Y2 = t(U(2) - U(1)), ..., Yn+I = t(1 - U(n)). Resultingly, P{Y1 + Y2 __ r} =

P{tU2 <_ r}. According to the exchangeability property, given n transitions, P{YJl +

YJ2 +... + YJm _- r} = P{tUm <_ r} for all permutations jl,j2,---,jm, m _ n + l, of

1, 2,... ,n + 1. Therefore, we can rearrange the sojourn times in a state trajectory such

that first kl intervals are of rate rl, the next k2 intervals are of rate r2, and so on. Then,

sum of the sojourn times for rates rewards ri, i = 1, 2,••., K + 1, can be expressed as

= YI + Y2 +... + Yk,,
12 = Yk_+l + Yk_+2 +... + Yk,+k:,

IK+l = Ykl+...+kK+l + Ykl+...+kK+2 +''' + Ykl+...+kK+l"

52

Giventhis, the conditionaldistributionfunctioncanbeformulatedas

P{AR(t) <_ r In, k}
1

=Py X

rl(Y1 +... + Ykl)+
r2(Ykl+l +.-. + Ykl+k:)+

rK+l(Yk_+...+k_+l +... + Ykl+-.-+k_+_)

Furthermore, by scaling the rate rewards such that bi = ri -rK+l, for i = 1, 2,..., K + 1,

the conditional distribution can be expressed as

P{AR(t) < r In, k} = P

bl(Y1 +... + Ykl)+

b2(Yk_+l+... + gkl+k_)+

bg(Ykl+...+kg__+l +... + Ykl+...+kg)

Now define the random variables 17/such that

YI+...+Y h
l -- t ,

Yh + _ +...+ Ykl +_2
V2 -_ t '

YK= t

Ykl +" ""t-k K- 1 +1 -_'...-}-Yk 14-...+k K

As given in [21], these random variables (V1, V2,..., VK) have a K-variate Drichlet proba-

bility density function (pdf)

r(n+l) K { K](kK+l--1):(vl'''''vK) -- NK+IF(ki) H (Vi)(ki-1) I--EVi:
11i=1 i----1 i----1

at any point in the simplex:

vl,...,vg) : vi > O,i = 1,...,K, vi <_ 1 ,
i=1

in the K-dimensional real space and zero outside.

Using these random variables, we can then express the conditional time-averaged accu-

mulated reward as

P_biVi__bl, whereb=r-rK+1. (4.6)P{AR(t) <_r] n,k} =
[, Ji-=1

53

Given(4.6),theproblemof computingconditionaltime-averagedaccumulatedrewardis

reducedto the computationof the distributionof a linearcombinationof randomvariables

with K-variate Drichlet distribution. To compute this, we use a result given in [21] for the

density function'of this distribution. In particular, the density function of AR(t), given k

and n is

K K k, Cl,mx(b/bt)x(1 _ (b/bt))bm-t(1 _ (b/bl))n-,_ (4.7)
fAR(t)(b l n'k) = 1-[ba k_ _ _ B(m,n-m + 1) '

a=l l=1 rn=l

where

1, if z > 0,X(z) = 0, else,

B(i,j) --- r(i+j) ,

and Ct,m are constant coefficients for the partial fraction'of

1

a(s) = (s + _1)kl(s + &p_... (s +&)k_,

where fli = (1/bi), i = 1, 2,..., K, are zeros of 1/G(s) and ki, i = 1, 2,..., K, denote their

order.

The PDF of AR(t), given n and k, is thus (by integration)

K g k_ 6l,m fb
FAR(t/(bIn, k) = H b;k°Z E B(,_,_7--_ + 1) J0 X(s/b_)x(l-(s/b_))sm-_(l-(s/bl))n-_ds"

a=l l=i m=l

(4.8)

To evaluate the integral in (4.8), we must know the regions in which the unit step functions

have a non-zero value. Note that

1 ifs>O, and X(1-(s/bl)) = I 1 ifs<b_,X(s/bt) = 0 else. ' [0 else.

Thus

FAR(t) (b [n, k) g K at Ct,m { fbt Sin-l(1 _ (s/bt))n-mds= H b-ak_ _ _ B(m,n-m + 1) fbo sin-l(1 - (s/bt))_-mds
a=l 1=1 rn=l

if b>bl

if 0 < b < bl

After solving the integrals

FAR(t)(b I n, k) =
K K kt (

II b; oE E c,,m
a=l /=1 m=l

b?
bm H[m,m-n,m+l,(b/bt)]

m B(m,n.rn+l)

if b> bl

ifO<_b<bl
, (4.9)

54

whereH[m,m- n,m + 1, (b/bz)] is a hyper-geometric function defined by the following

series,

1+ E _(_ + 1)...(,_+_ - 1) (_ -_)(,_ -_+ 1)...(,_ -n+_ - 1) b (4.10)
!(.+ i)(._+ 2) (._+_)

U_i " " "

Similarly, the complementary probability distribution function of AR(t), given k and n,

denoted (FAR(t)(btn, k)) , can be computed as

0 (iSb>_b -- K K kl b m H[m,m-n,rn+l,(b/bl)]_ if 0 < b < blFAR(t)(b [n,k) = II ba k" _ _ Ctm b? m B(m,n-m+t)] --
a=l l----1 rn----1

(4.11)

In Equation 4.11, we assume that 0 <_ kz _< n such that _K i kt = n+l. When kl = n+l, the

Markov chain only visits states with rate reward rl. The conditional probability distribution

is then 1, if the rate reward bl is greater than b, or 0, if it is less. More generally, suppose

x out of K rate rewards are greater than b, i.e., bi > b2 > -" > bz > b, then

-FAR(t)(b l n, k) = lib; k" __C,,m x b_n x 1- _ -_-B_rn--_--m-+--_)]"
a=l /=1 m=l

(4.12)

By looking at (4.12), one can easily realize that its computation by straightforward

means, like the Weisberg result, is susceptible to numerical errors. The main reason for these

errors is the computation of factorials in computing Him, m-n, m+ 1, (b/bl)], B(m, n-m+

1), and Cl,m. These expressions result in extremely large numbers which when subtracted

using normal floating point arithmetic may introduce significant loss of precision. However,

with appropriate manipulation, and selective use of extended precision math, these problems

can be avoided. In the remainder of this section, we derive three lemmas, which show how to

derive a computationally efficient and numerically stable means to compute FAR(t) (b I rt, k).

For simplicity, in the remaining discussion, let

Fl(n,m)= (1-(_)mH[m'm-n'm+l'(b/b')]__- B(_n,n-- m+ _ J" (4.13)

Accordingly,

FAR(t)(b I n,k) =

K x kl

II b;_°F, _ c,,m x b? xF_(_,,_),
a=l /=1 rn=l

55

whichafter algebraicmanipulationcanbewritten as

x K kt 1

-ffAR(t)(b ln, k) = _ I-I b; ka _ blk,-m)
/=t a = i m=l

a¢l

x Ct,m x Ft(n,m).

A Computation of Ct,m

To compute Cl,m, the constant coefficients of the partial fraction expansion of G(s), we

need to compute higher derivatives of the function Gl(s) (the ith derivative of Gt is denoted

G (i)_ where
l 1,

- + =
K

II
a----1

a#l

since

Ct,m = lira 1 Glk,_m)(s) _ 1 G (k'-m)_ '_ (4.14)

To compute Ct,m, we use Bell polynomials [23, 24], the higher derivatives of a compo-

sition of two functions. In particular, let h = f o g be the composition of f with g, that

is, h(t) = f(g(t)). Denote n-fold application of an operator d/dt by d(n)/dt (n). Further-

more, denote hn = d(n)h/dt (n), fn = d(n) f(g)/dg (n), and gn = d(n)g/dt (n). Assume that the

functions f, g, and h have derivatives of all the orders. Then the Bell polynomials can be

expressed as follows:

In general, hq

ht = ftgt

h2 = f2g_+flg2

h3 = f3g_+f2(3gtg2)+flg3

q
: _p=l fpOtp,q, where _pq'S are polynomials in gi's that do not depend

upon the choice of f. According to the Faa DiBurno's formula, [23], the C_pqcan be explicitly

56

representedas

q! g;q (4.15)
OLp,q -._ E (l!)nl(2!)n2...(q!)nq(nl!)(n2!)...(nq!)Yl Y2

ni >0

q

ni = p

i=1
q

Eini = q
i----1

q q

Note that the summation is over all ni such that ni >__0, Eni -- p, and Eini = q.
i=1 i=1

The computation of ap,q for large values of q thus becomes prohibitive. This, in turn,

makes the computation of higher derivatives of a composition of two functions impractical.

However, if the function h = f(g) is defined such that all its derivatives with respect to g

are identical, then an efficient recursive expression can be written to compute the higher

derivatives. This fact is expressed formally in the following lemma, which due to lack of

space is stated without proof.

Lemma 1 Let h = f(g) be a function such that h = fl = f2 Then ha, for some

q >_ 1, can be computed as

ha = q-1
q - i gihq-i + gqh .

Proof: See Appendix.

We can use Lemma 1 to efficiently compute the higher derivatives of Gl(-/3l). To do

this, we define f(s) = exp(s), h(s) = f(g(s)), and

K

g(s) = - Z koln(s+ Za)
a=l

a#l

Note that h(s) = exp(g(s)) = Gl(s). Furthermore, observe that

d(p)
--v-Gt(g(s)) = exp(g(s)), and
ag

57

K

a_(-#z) = II (#__ #_)-ko,
a=l

a¢l

for p > 1. Using Lemma 1, G(k_-m)(-fll) = hk_-m can then be expressed as

(4.16)

kinl()G}k,-m)(_#Z) = _ kl--m--1 giG}kz-m-i)(_#t)+gk__mGt(_flt),
i=1 k l m- i

(4.17)

where

K ka
gp = (-1)P(p- 1)! E for p k 1.#l)p

a=l

a¢l

By looking at Equation 4.17 and using an inductive argument, it can be realized that

G(kz-m)_-flZ_ = Gl(-_t) × G}k'-m)(--#l), where (4.18)

kl--m-1 (t-rl k--Pl} =

\

kl - m - i _ gi_}k,-m-i)(--fit) + gkl--m"
k_ --m -i /

Now, using Equations 4.14 and 4.18, Cl,m can be expressed as

(kl--m)/ oaz(-#) x _ t--u
G,m = (kz- m)!

Accordingly,

FAR(t) (b I n, k)

l=l a=l

a#l

(kl - m)!

(4.19)

x Fl(n,m).

Since fli = (1/bi), using Equation 4.16, we can write

=
K

H
a=l

a¢l

58

Finally,

F AR(t)(b [n ,k)

l=1 a=l

a#l

l (-)
(k! - m)!

x Fz(n,-_).

In the remainder of this section, we present two more lemmas, one which gives a recursive

expression to compute

Hz(m) - blk,_m) x (kl - m)!

and another which gives a recursive expression for computing Fl(n, m). Based on these

results, we can then present an algorithm to compute FAR(t) (b I n, k). Proofs of the lemmas

are omitted due to space limitations.

B Computation of Hi(m)

Lemma2 For l <_m < kl-1,

Hl(-_) --
kz - m [i=1 gi Ht(rn + i) + gkl-m '

where

,,
gi = (--1) i E kakbt_ba] '

a'=l

a#i

and for m = kt, Ill (m) = 1.

Proofi See Appendix.

C Computation of Fl(n,m)

Lemma 3 For m = 1,

_(n,_n)

59

and for 2 < m < n,

Proof: See Appendix.

V Algorithm to Compute -FAR(t)(b] n,k)

Recall that we can express the complementary conditional distribution in terms of HI (m)

and Fl (n, m) as

-FAR(t)(bln, k) = _ \b_-b_] _ Hi(m) x Fz(n,m).
1=1 a = 1 m=l

aT_ l

While the recursions developed in the previous section give us an efficient method to calcu-

late Hi(m) and Fl(n,m), Ht(m) will take on extremely large positive and negative values

for certain k and large n. These values can cause loss of precision in a practical implemen-

tation of the algorithm. This loss of precision can be avoided, to some extent, by writing a

recursion for HI(m) x Fl(n, m) directly, which we denote by Xz(n, m). In this notation,

-FAR(t)(b l n, k) = _ II \b_-ba) _ Xl(n,m). (4.20)
l=1 a : 1 m=l

a711

Then, using Lemma 2, we can write a recursive expression to compute Xl(n,m). Since

= Hi(m), Lemma 2 says that

kl--m--1
Xl(n, m) _ 1 ,,

(kl ×
i=l

Xl(n, m + i) + ,,
(n,m + i) gk,-m,

for 1 _<m _< kl - 1. This implies that

kl - m- iI ,, Fl(n,m) ,,

Xl(n,m) - (kl-m) _ gi xXl(n,m+i) x Fl(n,m+i) +gk,-m
i=1

x F_(n,m). (4.21)

6O

Notefor m = kl, X_(n, m) = Fz(n,m), since Hl(kt) = 1. By writing the recursion this way,

we avoid the problem with large Ht(m), since the Ft(n, m) are probabilities.

The formulation presented in (4.20) and (4.21) diminishes the numerical difficulty in

computing FAn(t) (b I n, k), but still requires careful implementation to avoid loss of precision

in the computation. In particular, the formulation calls for the addition of a large number

of positive and negative numbers, which will be large in magnitude for certain k and large

n. These numbers may be very close to one another, since when added together they should

equal a potentially very small probability. The main loss of precision in such cases is caused

by the subtraction of two numbers which are close in value. In this case, a large shift to the

left will be made after the operation to normalize the result, and many digits of precision

will be lost.

Keeping this in mind, to minimize the number of subtractions, we split Xl(n,m) into

positive X_°S(n, m) > 0 and negative x_eg(n, m) < 0 parts such that

x_(_,,_) = xFs(_,m) + xFg(n,,_).

Similar to the recursion in Equation 4.21, for 1 <_ m < kb -- 1, recursions for x_°S(n, m)

and x_eg(n, m) can be expressed as

rkl--ra--1 . _t

Xf°S(n'm) - (k_-,_) F_(n,._+i) +
k

kl -rn-1 _ .]Z z(g_ < 0)g_x/_g(_,._ + i) F_(_,m) ,,F_(n,._ + i) + I(gk,_m > o)g_,_m]i=1

and

x?eg(n,m)

(4.22)

l [k_-lI(g'i' > u)gi Az Ft(n, rn + i) +- _' "'_g(_,m+i) F_(n,._)
(k_ - m) k i=1

k,-m-i El(n,m) ,,]
.... pos i) Ft(n '

i=1 m + i) J '

(4.23)

where I(x) is an indicator function (returns 1 if x is true and else 0) and for m = kt,

X_°S(n,m) = Fl(n,m) and z_eg(n,m) = O.

Given that all the additions are performed in ascending order of absolute magnitudes,

then, for each shifted reward bt > b, Equations 4.22 and 4.23 yield an accurate (to the

61

precisionof the computation)positivevalueandnegativevalue.Both thesevaluesarethen

multipliedby

1-I - b_ '
a--1

a_l

which is denoted z in the algorithm below. Then, these two resulting numbers with powers

greater than 0 are subtracted to yield a probability. Since the subtraction will result in

a probability, the order of magnitude of the two numbers will always be the same (called

magnitude in the following algorithm). This implies that to obtain an answer accurate

to some specified precision, we need a decimal-digit precision in the computation equal to

the sum of magnitude and the desired precision. If normal floating point math (as per

the IEEE standard) does not provide the required precision, the algorithm obtains the

required precision by invoking multi-precision routines, rolling back, and recomputing the

required terms and sums. Thus, by the use of selective multi-precision, the algorithm always

achieves the desired precision and, hence, is numerically stable. Since there is only a single

subtraction needed for each shifted rate reward, each summation will at most roll back once,

leading to an efficient algorithm.

More precisely, the algorithm to compute FAR(t) (b I n, k) is as follows. (Note that the

given algorithm does not consider impulse rewards. However, an extension of the algorithm

to include impulse rewards is straightforward and can be done in a manner similar to one

presented by Qureshi and Sanders [25].)

Algorithm 1 (Compute the complementary conditional distribution, FAR(t) (bin , k), using
(4.20) and (_,.21).)

m

FAR(t)(b I n,k) = 0.

For l = l fox

For m = l to kt

Compute F_(n, m) by using recursion given in Lemma 3.

End(For).

For m = kt to 1

If (m = kl)

Else
= Ft(n, kl), and X?eg(n, kt) = O.

62

Use Equation 4.22 to compute xP°S(n, m).

Use Equation 4.23 to compute x_eg(n, m).

End(Fo#.

Let Xnegative be the sum of all X_ eg (n, m), added

in the ascending order of their absolute magnitudes.

Let Xpositive be the sum of all X_ °s(n, m), added

in the ascending order of their magnitudes.

Xpositive -'_ z x Xpositive.

Xnegativ e _ z x Xnegativ e.

Let magnitude be the logarithm (base 10) of Xpositive.

Let needed digits = magnitude + desired precision.

If (IEEE floating point precision > needed digits)

Ztota l _ Xpositive -]- Znegativ e

Else

Recompute Xtotal by recomputing Ith iteration

of for loop with needed digits precision.

FAR(t)(b I n, k) = FAR(t)(b I n, k) + Xtotal.

End(For)

This algorithm, together with the path-based approach described in Section III, provide

the basis for stable and efficient calculation of the distribution of time-averaged reward

accumulated over a finite interval. The overall algorithm to compute the distribution of

accumulated reward starts by first generating possible paths and computing their respective

probabilities. The probabilities of paths which correspond to identical k vectors are added

together, while the probabilities of paths corresponding to distinct k vectors are stored

separately. This exploration of paths and computation of path probabilities continues until

either all paths with probabilities greater than or equal to the discarding weight are explored

or the memory used reaches a preset machine-dependent limit. After reaching one of these

conditions, the conditional distribution of accumulated reward is computed for each k vector

generated, and after being multiplied by the probability of the explored paths corresponding

to the k vector, is added together with the results from other paths to form the unconditional

distribution. If all paths with probability greater than the threshold have not yet been

63

I DDD ._

41 RAMs

ch

memory module

I I

[][]•06 CPU

chips

CPU module

°°°°E1intIchlrI
memory module I

I

11oo.oloo.ol6 CPU 6 CPU

chips chips

CPU module CPU module

OOO-O
41 RAMs

I 2 int. Ich

memory module

I

DO -{3 I
6 I/O

chips

I/O port

 dler
I interface ibus

l

DO -0 I :
6 I/O lchips :

I/O port :

computer

:_:

::!io:io!
;....:L...{:...."

Figure 4.1: Fault-tolerant parallel computing system

explored, the process is repeated, exploring more paths and then computing the required

conditional distributions.

To test the algorithm on a non-trivial example, we have implemented it in C++, using

the multi-precision library LiDIA [26]. The implementation has been used for several large

examples and works well when the number of paths required to compute a desired accuracy

is not more than tens of millions. One such example, with over one-half million states is

given in the next section.

VI Example Study

The applicability of our approach is illustrated by considering the performability analysis

of a highly redundant fault-tolerant multiprocessor system from Lee et al. [27]. The system,

at the highest level, consists of three non-repairable computers. (Lee et al. considered a

variable number of computers.) (Note that our algorithm applies to repairable, as well

as non-repairable systems.) As shown in Figure 4.1, each computer is composed of three

memory modules, of which one is a spare; three CPU units, of which one is spare; two I/O

ports, of which one is spare; and two non-redundant error handling chips. A computer is

classified as operational if at least two memory modules, two CPU units, one I/O port, and

the two error-handling chips are working.

64

1.000

^

x

o. 0.995

0.990 -- - -

0.985

0.980

0.975
0.0

i ! I . _.. % • .%!

= = i : = = i "_ .%=_.. ,1_

• -.-A, 2-months , : , _.'_ "\ , "'n
• --.--B_ 3-months _ _ _ _ • ", •

-.-_L 4-months ; _ ; _ _ \. "_ _"_ ;

-- --:--:+_5--rfioSths------ -_--- -;--- _ i _' _ ix -.-×E 6-months _ _ _ [_ • , -
I I i = I I i %'._ _'. r

I I i i ! I ! I I "_

I I i _ I i ;

i I i i i _ i i t i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percentage of maximum performance, x

Figure 4.2: Performability Distribution

Internally, each memory module consists of 41 RAMs, out of which two are spare chips

and two are interface chips. Each CPU unit and each I/O port consists of six non-redundant

chips. A memory module is classified as operational if at least 39 of its 41 RAM chips and

its two interface chips are working. Each component failure has coverage probabilities asso-

ciated with it. The coverage probabilities are state dependent, and there are multiple levels

of coverage (module, computer, multiprocessor). We used the same coverage probabilities

and the failure rate for the chips as used in the original model by Lee et al. [27].

The performability measure considered is the complementary PDF of the fraction of

jobs completed in the interval, considering faults, relative to the number of jobs that would

complete in a fault-free system. More specifically, we consider a system where 300 jobs

complete per second if 3 processors are working, 200 jobs complete per second if 2 processors

are working, and 100 jobs complete per second if 1 processor is working. The measure, then,

is the PDF of the number of jobs that complete divided by 300 • T, where T is the length

of the interval under consideration.

The model was represented as a stochastic activity network, as was done in [28]. Space

does not permit presentation of the SAN model here. The Markov level representation of

the model is very large, consisting of'463,268 states even if reduced base model construction

[29] is used to detect symmetries in the process. To the best of our knowledge, this is by

far the largest and most complicated model that has ever been solved for the distribution

65

•_ _ , i p :,_,,i , _ _ iiirlt : :,:,, , , L _l:_Jb ' I I ;L,I_ : _ , I,IIII

40_0 0 -- ± J -_ --'Lr _ _ _ _; _ -' _I J ± '2 U - - -' ± i__ L' - - ' - ± -: J ± I_,U - - _I - ± _' j ± ,j U - - - - ± = _ _I ;_:
" I , 1,1_I_ , : , ,I,IIr : !,i:: , ! , i,i,Ii I I , ,_II,, , i : _,,,,_

Q" i I;FII I I I I Irllll , i _,:_ ; i e 1:_414 ; I I i IIId : ,l_rJt

3000.0 q T[_n- - n - T mq T_n - - n , T :-_ '- - - n - m -_ q T,qn - - q- T -I q T_n - - q- T -I _ ml_q

2000.0 ______ -_--_-_u--_-_-_--_-_--_

15000 J- - J J zuu- - _- - - _ ±L:_--- J- ± J J ±_JU-- J- _ - J _I--_L'- - _- ± _ _-"U

500.0 - - - = T _-, F: - - q - T q q T I-I F, - - q - T q q T ,-: n - - _ - T -, -, T ,-, i-,

1.0e-13 1.0e-12 1,0e.ll 1.0e.10 1.0e.09 1.0e.08

weight

.0

s
.o-o5

1.0e-G6

1,0e-07

==

= = === =_=_=== == = ===_== = === ====== = _=- E __=E___E =..2=_= __=E==_ E E _=5 = _E_
-- E 5E.-25_,_-- -_- -5=.--_.--= -_EE_=_ -- ; -=-_-_= = n== ._ :a=z:s=mm========_=

--SE E E5_65- - 5- = 55_.5G= __==E EEEEE E E --E 5.5_fifiEE 5E _ 55_E E EEEEE_EE
ZZ2ZZ22_ZZ2ZI22Z-_ZZ2ZZZZZ_ZCZZ2ZZ22ZG_Z_BZZ25Z_GZZ2ZZ22Z_2

1.0e.13 1.0e.12 1.0e.ll 1,0e.10 1.0e-09 I._e-08

weight

Figure 4.3: Effect of Discarding of Paths (t = one year)

of accumulated reward, and it illustrates the practicality of our approach.

We present results regarding both the performability of the considered system and the

efficiency of the algorithm in the context of the example. In particular, Figure 4.2 depicts

the complementary distribution of reward accumulated during time intervals of one to six

months. Each line on the graph corresponds to a specific time interval, and it gives the

probability that the system performs at a level higher than the value given on the x-axis.

A discarding threshold value of w = 10 -u was used for all time intervals, resulting in an

accuracy of more than six digits for each result.

Figure 4.3 illustrates the effect of changing w on the number of paths considered and

the bound on the error obtained du_ to discarding paths whose probabilities are less than

the value w. For this example, we consider a utilization period of one year. Since the

space required by previous approaches depends critically on the length of the interval,

66

this (reasonable)time point would result in an unreasonablylargememoryrequirement

for currentnon-path-basedapproaches.Note that the numberof paths that needto be

considereddecreasesdramaticallywith an increasingweight,while theerrorboundachieved

remainsreasonable.This illustratesthe effectivenessof our approachon systemswith up

to millionsof probablepaths.

VII Conclusion

In this paperwehavepresenteda newmethodfor computingthe distribution of time-

averagedrewardaccumulatedovera finite interval. The methodis basedon generating

pathsof the uniformizedprocesswhichareprobable,and computingthe probability dis-

tribution of accumulatedrewardconditionedon eachpath. To makethis practical, we

havedevelopeda newalgorithmfor computingthe conditionaldistribution of accumulated

rewardwhichis computationallyefficientandnumericallystable.In addition,wehavepre-

sentedexperimentalresultsto showthat the path-basedapproachis usefulwhensolving

Markovrewardmodelswith largestatespacesandup to tensof millionsof probablepaths.

We alsohaveshownthat, for the exampleconsidered,the numberof paths requiredto

obtaina result decreasesdramaticallyasthe path discardingthresholdis increasedwhile

still obtainingreasonableaccuracy.

Theseresultsbodewell for the the practicaluseof rewardmodelsin performability

modeling.

Acknowledgment

Wewouldliketo thankLuai Malhis,whobuilt the SANrepresentationof the multipro-

cessorusedasourexample.

REFERENCES

[1]

[2]

[3]

[4]

R. A. Howard, Dynamic Probabilistic Systems (vol. II). John Wiley _: Sons, 1971.

J. F. Meyer, "Closed-form solutions of performability," IEEE Transactions on Com-

puters, vol. 31, no. 7, pp. 648-657, 1982.

D. G. Furchgott and J. F. Meyer, "A performability solution method for degradable

non-repairable systems," IEEE Transactions on Computers, vol. 33, no. 6, pp. 550-554,
1984.

L. Donatiello and B. R. Iyer, "Analysis of a composite performance reliability measure

for fault-tolerant systems," Journal of the ACM, vol. 34, no. 1, pp. 179-199, 1987.

67

[5] A. Goyaland A. N. Tantawi, "Evaluationof performabilityfor degradablecomputer
systems,"IEEE Transactions on Computers, vol. 36, no. 6, pp. 738-744, 1987.

[6] B. Ciciani and V. Grassi, "Performability evaluation of fault-tolerant satellite systems,"

IEEE Transactions on Communications, vol. 35, no. 4, pp. 403-409, 1987.

[7] V. G. Kulkarni, V. F. Nicola, R. M. Smith, and K. S. Trivedi, "Numerical evaluation

of performability and job completion time in repairable fault-tolerant systems," in

Proceedings of 16th Int. Symposium on fault-tolerant computing, (Vienna, Austria),

pp. 252-257, July 1985.

[8]R. M. Smith, K. S. Trivedi, and A. V. Ramesh, "Performability analysis: measures,

an algorithm, and a case study," IEEE Transactions on Computers, vol. 37, no. 2,

pp. 406-417, 1987.

[9]K. R. Pattipati, Y. Li, and H. A. P. Blom, "A unified framework for the performabil-

ity evaluation of fault-tolerant computer systems," IEEE Transactions on Computers,

vol. 42, no. 3, pp. 312-326, 1993.

[10] E. de Souza e Silva and H. R. Gail, "Calculating availability and performability mea-

sures of repairable computer systems," Journal of the ACM, vol. 36, pp. 171-193,

January 1989.

[11] L. Donatiello and V. Grassi, "On evaluating the cumulative performance distribution

of fault-tolerant computer systems," IEEE Transactions on Computers, vol. 40, no. 11,

pp. 1301-1307, 1991.

[12] E. de Souza e Silva and R. Gall, "Calculating transient distributions of cumulative

reward," in Proceedings of Sigmetrics/Performance-95, (Ottawa, Canada), pp. 231-

240, May 1995.

[13] R. Marie, A. L. Reibman, and K. S. Trivedi, "Transient analysis of acyclic Markov

chains," Performance Evaluation, vol. 7, pp. 175-194, 1987.

[14] E. de Souza e Silva and P. M. Ochoa, "State space exploration in Markov models,"

Performance Evaluation, vol. 20, pp. 155-166, 1992.

[15] H. Weisberg, "The distribution of linear combinations of order statistics from the uni-

form distribution," The Annals of Mathematical Statistics, vol. 42, no. 2, pp. 704-709,

1995.

[16] E. de Souza e Silva and H. R. Gail, "Calculating cumulative operational time distri-

butions of repairable computer systems," IEEE Transactions on Computers, vol. 35,

pp. 322-332, April 1986.

[17] S. M. Ross, Stochastic Processes. John Wiley & Sons, 1982.

[18] A. M. Mood and F. A. Graybill, Introduction to the Theory of Statistics. McGraw-Hill

Book Company, Inc., 1963.

68

[19] E. deSouzae SilvaandR. H. Gail, "An algorithmto calculatetransientdistributions
of cumulativereward,"Tech.Rep.CSD-940021,Universityof California,LosAngeles,
May 1994.

[20] J. F. Meyer,A. Movaghar,andW. H. Sanders,"Stochasticactivity networks:Struc-
ture, behavior,and application,"Proceedings of International Workshop on Timed

Petri Nets, Torino, Italy, pp. 106-115, 1985.

[21] T. Matsunawa, "The exact and approximate distributions of linear combinations of
selected order statistics from a uniform distribution," The Annals of Institute of Sta-

tistical Mathematics, vot. 37, pp. 1-16, 1985.

[22] S. M. Wilks, Mathematical Statistics. John Wiley & Sons, Inc., 1963.

[23] J. Riordan, An Introduction to Combinatorial Analysis. John Wiley & Sons, Inc., 1958.

[24] G. M. Constantine, Combinatorial Theory and Statistical Design. John Wiley & Sons,

Inc., 1987.

[25] M. A. Qureshi and W. H. Sanders, "Reward model solution methods with impulse and

rate rewards: An algorithm and numerical results," Performance Evaluation, vol. 20,

pp. 413-436, 1994.

[26] V.. LiDIA Manual, "A library for computational number theory," tech. rep., Univer-

sitat des Saarlandes, August 1995.

[27] D. Lee, J. Abraham, D. Rennels, and G. Conte, "A numerical technique for the eval-

uation of large, closed fault-tolerant systems," in Dependable Computing for Critical

Applications, pp. 95-114, Springer-Verlag, Wien, 1992.

[28] W. H. Sanders and L. M. Malhis, "Dependability evaluation using composed SAN-

based reward models," Journal of Parallel and Distributed Computing, vol. 15, no. 3,

pp. 238-254, 1992.

[29] W. H. Sanders and J. F. Meyer, "Reduced base model construction methods for stochas-

tic activity networks," IEEE Journal on Selected Areas in Communications, vol. 9,

pp. 25-36, 1991.

69

APPENDIX

Proof of Lemma 1
Basis Step. Let q = 1. Then the sum on the right is hgl.

hi = hgl.

Induction Hypothesis. Assume that for some n > 1,

i=l ?%-- _

From the definition of hi,

Induction Step. Note hn+l = d(n+l)h/dt (n+l) = d(hn)/dt. Accordingly,

hn+l = --_ hn= n-i
i----1

= n- 1 d [gihn-1] + [hg,_]

<ol) (nl)dn 1 -_[glhn-1] + n-2 -_[g2hn-2] +'"+

2 _-_[gn-2h2] + 1 _-_ [gn-lhl] + gn'-_h + gn+lh

d= d-_ [glhn-1] + (n 1) [g2hn-2] +"" +

d

+(n- 1)_ [gn-lhl] + gnhl + g_+lh

= glhn + g2hn-1 + (n- 1)g2hn-1 + (n- 1)g3hn-2 +"" +

(n - 1)(n --2) (n --1)(n - 2)
gn-2h3 + gn-lh2+2 2

(n - 1)gn-lh2 + (n)gnhl + hgn+l

--g_hn+(n)g_h_-_+""+[(n-1)(_-2)2 +(n-I)]
(n)gnhl + gn+lh

n glhn + n- 1 g2hn-1 + "'" + 2

= _ n+l -i
i=1

(n-1)(n-2) d
2 dt [gn-2h2]

gn-lh2+

gn-lh2

Proof of Lemma 2 For m = kt, it is obvious that Hi(m) = 1. For 1 _< m <_ kl- 1, consider

7O

Equation(4.19,of the chapter),thenwecanwrite

H,(._) - b}k)_m/× (k,-m)! L _=1

Note

(kl - m)! kl - m - 1

g_ alk_-_-_)(-#D
q × b_,_m_2+

2 x

(k_-m-1)0+

kl-m-1kt -m-3

gk,-m-_ d}_1
b}_'-m-_)× bT+

9k_-m
X--

b}kZ-m)_

Let

b_t-m-1 + kt - m - 2 x

g3 d}k'-m-3/(-#D× b7× b_'-m-_ +" +

(kl--_--l) gk,-_-i 0}_)1 x b}kl_m_l) x b--;--

K (bah,)_ fori>l.
gi = (-1)i(i-1)! _ ka \b_-b_) '

a=l

a¢l

g_= (-1/(i- 1)! _ ko\b_--T:-gT]' fori _ 1.
a=l

a T_ l

Accordingly, Equation 4.24 can be written as

Solving combinatorial and factorial terms, we get

- (k,-_) LO_x t,b}'<'--_-_)× _=_--77r.,)

(4.24)

,(g2 1

+ _ x blk'-m-2)

71

Let

Accordingly,

x (kl-m-2)! +_'.wx - x +

(1g_,-m-_ _I=/(-_,)'_+ g_,-m-, ×
""+(k_-m-3)! x x 2!] (k_-m-2)!

]°}')L-_,)) b,_-_i)_:x 1!] + (k_- m-

,,g, = (-1)_ Z ko -bo
a=l

a#i

[(('1 1 _l'_'-m-')(-_,)'_+ g_× ×
(k_-,_) g[x - x

b?,-m-3/ _, =_ :_.,) ++

" °}_)(-#')'_+ × x +_,_,-m
gk,-..-2 x x _] gk,-m-_ _ i!

which implies that for 1 < m <_ kz - 1,

Hz(m) - k_ - m L _=_ g_H_(m + i) + gk,-m • []

Proof of Lemma 3 To obtain a formal proof for Lemma 3, we first analyze the expression

Rl(n,m) = H[m,m- n,m + 1,(b/bt)]
m B(m,n-m+l)

Since 1 < m < n, the second term (m - n) of the hyper-geometric function H[m, m -

n, m + 1, (b/bl)] either gets a value of 0 or a negative integer. Therefore, the summation

representing the hyper-geometric function (see Equation 4.10) is truncated after (n - m)
terms. Based on this observation and the fact that

1

rn B(m, n - m + 1)

we can express Rt(n, m) as

nl(n,-_) =

(n)

(nm) +n£mm-(m+l)'''(m+u-1) xu=lu'

(mTii(m+ 2) (re+u) _ m

72

/ . n(bl)() 1
R,,m,n,:n)+[,_l,(

m 1 m + 1 2 (4.25)

m+2 +"" + (-1)n-m n-m n _/ J"

Using Equation 4.25, now we present a lemma which will be used in writing the proof
for Lemma 3.

Lemma 4 Let y = (t/b_). For 2 < m < n,

(-1) m d (m-l) (Fl(n, 1)-l)R_(n,_) - (_: _!_y _ _

Proof: By induction on 0.

Basic Step. Consider m = 2. From Equation (4.25),

(n) (n)2 + (-1)2 3 Y + (-1)23 4

Prom combinatorial theory, we know

Y2+'"+(-1)n-2(n-1)(n) yn-2"n

(4.26/

- r yr
r=0

(4.27)

which implies that

,,y,nl ,1,(n) (n)y 1 +(-1)2 2)Y2+"'+(-1)n(n) yn-ln

73

Differentiatebothsideswith respectto y,

dy y 2 + (-1)32 3 Y + (-1)43 4

()= +... + (-l)n(n- i) n yn--2
n

= 2 + (-i)2 3 Y + (-i)23 4 n

From Equations (4.26) and (4.28),

d

Rl(n, 2) -- dy [F_(n'l)- !]

Induction Hypothesis. Assume that for some 3 _< i < n,

('1) i d (i-i) (/_(n, 1)-l).nl(n,i) (i:_!dy \ y

Induction Step. Using Equation (4.25), we can write

i + (--1)i i + 1 Y + (-1)2 2! i + 2

(i + 1)i n ya +... +
3! i+3 (--n 2--i0 n

and

Rt(n,i + 1) in) (o) n)i+1 + (-1)(i + 1) i+2 Y + (-1)2 2! i+3

Y2+(-1)3(i+3)(i+2)(i+1) (3! i+4n)y3+...+(_l)n_i_l(n_l)

(n--2)'"(i+l) (n)yn-i-1

Realizing from these two equations,

Rt(n,i + I) -- (-1) d [Rl(n,i)] :
i dy (-1) (-1)i d (d (i-1) Fl(n,)-I))i (i--_!dy \dy (1 .

This proves,

Rt(n,i+ I) = (i-1)i+1i! dyd(i) (Ft(n'l)- l) "[1]

74

UsingLemma4, wenowcanproveLemma3.

Lemma3 is provedin two parts. The first part provesthe lemmafor m = 1, while the

second part proves it for 2 _< m < n.

(1) For m = 1: Using Equation 4.25,

R,nl,=(o) (n)1 + (-1) 2

From Equation (4.13), we know that

Fz(n, 1) = 1- yRl(n, 1),

= I+(-i)(n)i

Y+(-1)2(n)3

Y+(-1)2(n)2

Using Equation 4.27, we can finally write

El(n, 1) = (1-y)n

(2) For 2 <_ m _< n: By induction on m.

Basic Step. Let m = 2. Using Lemmas 4 and 5,

Y2+'"+(-1)n-l(n) yn-l"n

[/1 1]Rl(n, 2)- l! dy y

Using Equation (4.13),

Y2+"'H-(-1)n(n) yn'n

.O

i - ny(l - y)n-i _ (I -- y)n

Fl(n, 2) = i - y2Rt(n, 2),

which proves

F_(_,2) = ny(1 - y)_-i + F_(_,1).

Induction Hypothesis. Assume that for 3 < i < n,

(n)yi-l(1-y)n-(i-1)Fl(n,i) = i- 1

Induction Step. Using Lemma 5,

y2

Rl(n,i+l) -- (-1) d_: [R_(,,i)].
%

+ Fl(n,i - 1).

Also, it is clear from Lemma 5 that Rt(n,i) has a negative sign for odd values of i and

a positive sign for even values of i. Keeping this fact in mind and using Equation (4.13),

Rt (n, i) can be expressed as

(Fz (_, i) - !)Rl(n,i) = (-1) i \ y7 "

75

Supposei is odd, then

n_(_,i + 1) - (-1) d[z: dy (-1) Fl(n' i) - l]_y::
1 d [F_(_,A) - 1].
i dy L yi]

From induction hypothesis,

,_1()F, = _ _ y)n-k.k Yk(i -
k=O

Accordingly,

Rl(n,i + 1)
ld

i dy

+ 1- _k=0 k Yk(1 -

yi+l

Fl(n,i + 1) = 1 -- yi+lRl(n,i + 1)

which gives,

ft(n,i+l) =

Similarly, when i is even, then

() ,l()n y)n-i n= i yi(1 - + _ k yk(1 _ y)n-k,
k=O

n) y)n-ii yi(1 - -FFl(n,i).

(-1) d
R_(n,i + 1) -

i dy

= (-1)

n
yi

i yi(1 - - 1 + _k=o k Yk(1

yi+ 1

This gives

Fl(n'i+l) = (n)" i yi(1-y)n-i
+ F,,(_,i). m

76

